检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明
in certificate chain 图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com/Rudrabha/Wav2Lip
训练作业训练失败报错:TypeError: unhashable type: ‘list’ 问题现象 使用订阅算法图像分类-EfficientNetB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。
local_code_dir 否 String 算法的代码目录下载到训练容器内的本地路径。规则: 必须为/home下的目录。 v1兼容模式下,当前字段不生效。 当code_dir以file://为前缀时,当前字段不生效。 working_dir 否 String 运行算法时所在的工作目录。规则:v1兼容模式下,当前字段不生效。
Pytorch Mox日志反复输出 问题现象 ModelArts训练作业算法来源选用常用框架的Pytorch引擎,在训练作业运行时Pytorch Mox日志会每个epoch都打印Mox版本,具体日志如下: INFO:root:Using MoXing-v1.13.0-de803ac9
使用PyCharm ToolKit创建并调试训练作业 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Note
训练作业性能降低 问题现象 使用ModelArts平台训练算法训练耗时增加。 原因分析 可能存在如下原因: 平台上的代码经过修改优化、训练参数有过变更。 训练的GPU硬件工作出现异常。 处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(
使用PyCharm Toolkit插件连接Notebook 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接N
已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 图1 创建训练作业 训练作业启动命令中输入: cd /home/ma-user/work/Qwen-VL;
ModelArts Standard支持用户构建自定义镜像用于模型训练。 自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置框架无法满足需求,否则不推荐使用。自定义镜像需上传至容器镜像服务(SWR),才能用于ModelArts Standard上训练。 自定义镜像的启动命令规范
当前支持的数据类型包括:int、str、bool、float、Enum、dict、list。开发者可根据场景需要,将节点中的相关字段(如算法超参)通过Placeholder的形式透出,支持设置默认值,供用户修改配置使用。 属性总览(Placeholder) 属性 描述 是否必填
print(engine_dict) 使用案例 主要包含七种场景的用例: 使用订阅自AI Gallery的算法 使用算法管理中的算法 使用自定义算法(代码目录+启动文件+官方镜像) 使用自定义算法(代码目录+脚本命令+自定义镜像) 基于数据集版本发布节点构建作业类型节点 作业类型节点结合可视化能力
使用VS Code创建并调试训练作业 由于AI开发者会使用VS Code工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境、贴近本地开发习惯地编写启动命令,ModelArts提供了一个训练作业场景下的IDE插件ModelArts-HuaweiCloud,用
ModelArts线上训练得到的模型是否支持离线部署在本地? 通过ModelArts预置算法训练得到的模型是保存在OBS桶里的,模型支持下载到本地。 在训练作业列表找到需要下载模型的训练作业,单击名称进入详情页,获取训练输出路径。 图1 获取训练输出位置 单击“输出路径”,跳转至OBS对象路径,下载训练得到的模型。
lder_name criticism_sample_path 否 None 数据清洗负样例目录。目录应存放负样例图片文件,算法将这些图片为负样例,对算法输入中的数据进行过滤, 即保留与“criticism_sample_path”目录下图片相似度差距较大的数据。 建议该参数和“
生成图像的高层级属性(high-level attributes),如发型、雀斑等;并且生成的图像在一些评价标准上得分更好。而本算法又增加了数据增强算法,可以在较少样本的情况下也能生成较好的新样本,但是样本数尽量在70张以上,样本太少生成出来的新图像不会有太多的样式。 图4 StyleGan算子
训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。
已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed 代码目录。 图1 创建训练作业
已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。 图1 创建训练作业
已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。 图1 创建训练作业