检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
约束限制 纵向联邦作业XGBoost算法只支持两方参与训练。 训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:
批量预测作业必须选择一个当前计算节点发布的数据集。 创建联邦预测作业 批量预测作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法、深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦
等在保护各方原始数据隐私的前提下,通过多方联合建模,金融机构补充了风控模型特征维度,提升模型准确率。 优势: 提升模型准确率 多方机构实现算法层面联合建模,提升了需求方模型的预测效果。 数据隐私保护强 多方采用隐私集合求交PSI对齐样本数据,本地数据或模型加密后在安全环境中运算,
这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练特征;过低的iv值没有区分性会造成训练资源的浪费,过高的iv
作业描述可按需填写。 勾选参与双方的数据集,同时单击右侧已选数据集的对齐列框选择需要求交集的字段信息。 对齐列只能选择非敏感的唯一标识。 选择求交算法。 选择椭圆曲线。 选择大数据量节点。 配置重试参数。开关开启后,执行失败的作业会根据配置定时进行重试,仅对开启后的执行作业生效。开关关闭
相关文档 1 秘密分享 横向联邦学习新增支持秘密分享算法。 商用 联邦机器学习作业 2 隐私集合交集PSI 联邦SQL分析新增支持隐私保护集合求交能力。 商用 联邦数据分析作业 3 国密算法 新增支持国家密码局认定的国产商用密码算法。 商用 联盟管理 计算节点管理 2021年7月 序号
络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面,选择实时预测的Tab页,单击创建。 图1 创建作业 在弹出的对话框中编辑“作业名称”,选择“算法类型”。 选择“算法类型”之后,勾选“
授权IAM用户使用TICS 准备数据 启用区块链审计服务(可选) 获取认证信息 空间管理 组建空间 管理空间 代理管理 部署代理 管理代理 管理数据 管理任务 管理算法 审计日志 作业管理 多方安全计算作业 可信联邦学习作业 联邦预测作业 常见问题 了解更多常见问题、案例和解决方案 热门案例 什么是区域和可用区?
可验证代码示例 数据准备 数据集发布 隐私规则防护 基本计算能力验证 基于MPC算法的高安全级别计算 统计型作业的差分隐私保护 父主题: 多方安全计算场景
区块链名称 channel_name String 通道名称 org_name String 组织名称 org_name_hash String 组织名称的hash 表6 TicsAgentDeployDetail 参数 参数类型 描述 agent_access_address String
基于TICS实现端到端的企业积分查询作业 简介 阶段一:数据发布 阶段二:隐私规则防护 阶段三:审批防护 阶段四:基本计算能力验证 阶段五:基于MPC算法的高安全级别计算 阶段六:统计型作业的差分隐私保护
数据管理>数据创建页面,选择对应连接器(连接器管理中已建立完备),将需要共享的数据发布至空间侧,并支持通过转换函数将特征数据转换成更加适合算法模型的特征数据。 使用场景 连接器使用场景:参与方的数据信息分布在不同的资源服务上,即可通过连接器管理功能来快速连接到名下的各类资源服务。
或者包含下列任何字符:\ / : * ? " < > |,长度要求在1~128之间。 algorithm_type String 纵向联邦算法类型枚举,XG_BOOST,LIGHT_BGM,LOGISTIC_REGRESSION 逻辑回归,NEURAL_NETWORK 神经网络,FIBINET
包含下列任何字符:\ / : * ? " < > |,长度要求在1~128之间。 algorithm_type 是 String 纵向联邦算法类型枚举,XG_BOOST,LIGHT_BGM,LOGISTIC_REGRESSION 逻辑回归,NEURAL_NETWORK 神经网络,FIBINET
联邦学习运行平台枚举值。LOCAL,MODEL_ARTS learning_rate String 纵向联邦算法学习率 algorithm_type String 纵向联邦算法类型枚举。 XG_BOOST, LightGBM LOGISTIC_REGRESSION 逻辑回归 NEURAL_NETWORK
隐私保护等级:高级别时,默认启用高安全性的隐私计算的算法保障计算过程的安全,例如秘密分享加密、PSI等,但可能会影响性能以及部分作业正常执行。低级别时,使用国际标准的对称和非对称加密结合方式,在安全沙箱内进行解密计算。性能和灵活度较高。 结果差分隐私:开启时,使用差分隐私算法对多方安全计算作业的执行结果
is_discrete Boolean 是否离散 length Integer 长度 privacy_policy String 隐私策略。HASH哈希处理,MASK掩码,NONE不处理 privacy_policy_ext String 隐私策略描述 sacle Integer 精度
联邦学习运行平台枚举值。LOCAL,MODEL_ARTS learning_rate String 纵向联邦算法学习率 algorithm_type String 纵向联邦算法类型枚举。 XG_BOOST, LightGBM LOGISTIC_REGRESSION 逻辑回归 NEURAL_NETWORK
步骤4:(可选)下载计算节点配置信息 下载计算节点配置信息 下载计算节点配置相关的信息,下载的信息可在部署计算节点的时候导入。“计算节点配置”代表“部署计算节点”属于哪个空间,用户输入的数据就会在哪个空间中参与计算。 配置信息包含证书,用于计算节点之间通信双向认证。证书保证了空间
3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imbalanced-Learn中的SMOTE算法,进行了数据集的扩充。下表为扩充过后的数据集统计信息。 乳腺癌数据集统计信息。 统计量 取值 特征数目 30 xx医院的训练样本数目 7366