检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
tonkenization_qwen.py会在cache中读取SimSun.ttf 文件,如果没有,就会联网下载,可能会遇到: SSL:CERTIFICATE_VERIFY_FAILED ssl.1129错误 407 Proxy Authentication Required 解决方案: 1. 直接手动下载
性能预期:QPS 20/s - 业务访问方式 推理业务访问:“客户端 -> 云服务” 或 “云客户端 -> 云服务”。 推理业务时延要求,客户端到云服务端到端可接受时延。 例如:当前是“客户端 -> 云服务”模式,客户端请求应答可接受的最长时延为2秒。 - 模型参数规模,是否涉及分布式推理
Unauthorized 在客户端提供认证信息后,返回该状态码,表明服务端指出客户端所提供的认证信息不正确或非法。 402 Payment Required 保留请求。 403 Forbidden 请求被拒绝访问。 返回该状态码,表明请求能够到达服务端,且服务端能够理解用户请求,但是拒
ssl_certificate /etc/nginx/ssl/server/server.crt; ssl_password_file /etc/nginx/keys/fifo; ssl_certificate_key /etc/nginx/ssl/server/server
如果出现报错SSL certificate problem: self signed certificate in certificate chain 图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git
系统默认使用https。如果您想使用http,可以采取以下两种方式: 方式一:在部署边缘服务时添加如下环境变量: MODELARTS_SSL_ENABLED = false 图1 添加环境变量 方式二:在使用自定义镜像导入模型时,创建模型页面中“容器调用接口”设置为“http”,再部署边缘服务。
本地构建镜像:在本地制作自定义镜像包,镜像包规范可参考创建模型的自定义镜像规范。 本地验证镜像并上传镜像至SWR服务:验证自定义镜像的API接口功能,无误后将自定义镜像上传至SWR服务。 将自定义镜像创建为模型:将上传至SWR服务的镜像导入ModelArts的模型管理。 将模型部署为在线服务:将导入的模型部署上线。 本地构建镜像
署成在线服务。 操作流程如下: 本地构建镜像:在本地制作自定义镜像包,镜像包规范可参考创建AI应用的自定义镜像规范。 本地验证镜像并上传镜像至SWR服务:验证自定义镜像的API接口功能,无误后将自定义镜像上传至SWR服务。 将自定义镜像创建为模型:将上传至SWR服务的镜像导入ModelArts的模型。
台的“镜像管理”页面中单击“注册镜像”。 图6 在ModelArts控制台注册镜像 在镜像源中,选择上一步中上传到SWR自有镜像仓中的镜像名,作为模型推理使用的镜像,架构选择ARM,类型选择CPU和ASCEND。 图7 注册镜像 Step9 通过openssl创建SSL pem证书
性能预期:QPS 20/s - 业务访问方式 推理业务访问:“客户端 -> 云服务” 或 “云客户端 -> 云服务”。 推理业务时延要求,客户端到云服务端到端可接受时延。 例如:当前是“客户端 -> 云服务”模式,客户端请求应答可接受的最长时延为2秒。 - 模型参数规模,是否涉及分布式推理
Step8 注册镜像 镜像上传至SWR成功后,在ModelArts控制台注册镜像。 登录ModelArts管理控制台,在左侧导航栏选择“资产管理 > 镜像管理”,然后在“镜像管理”页面右上角单击“注册镜像”。 在“注册镜像”页面,“镜像源”选择上一步上传到SWR自有镜像仓中的镜像名
port=8080) 执行代码,执行后如下图所示,会部署一个在线服务,该容器即为服务端。 python test.py 图2 部署在线服务 在XShell中新建一个终端,参考步骤5~7进入容器,该容器为客户端。执行以下命令验证自定义镜像的三个API接口功能。当显示如图所示时,即可调用服务成功。
台的“镜像管理”页面中单击“注册镜像”。 图8 在ModelArts控制台注册镜像 在镜像源中,选择上一步中上传到SWR自有镜像仓中的镜像名,作为模型推理使用的镜像,架构选择ARM,类型选择CPU和ASCEND。 图9 注册镜像 Step9 通过openssl创建SSL pem证书
requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x
本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤三:上传代码包和权重文件中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。 cd benchmark_tools
requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
台的“镜像管理”页面中单击“注册镜像”。 图6 在ModelArts控制台注册镜像 在镜像源中,选择上一步中上传到SWR自有镜像仓中的镜像名,作为模型推理使用的镜像,架构选择ARM,类型选择CPU和ASCEND。 图7 注册镜像 Step9 通过openssl创建SSL pem证书
nogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models
台的“镜像管理”页面中单击“注册镜像”。 图7 在ModelArts控制台注册镜像 在镜像源中,选择上一步中上传到SWR自有镜像仓中的镜像名,作为模型推理使用的镜像,架构选择ARM,类型选择CPU和ASCEND。 图8 注册镜像 Step9 通过openssl创建SSL pem证书
nogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models