检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的全过程流向
阶段五:基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了秘密分享加密。DAG图显示了“psi +
空间API应用示例 本节通过cURL方式调用TICS API,获取TICS相关资源信息为例,介绍使用TICS管理面API的基本流程。 获取用户token 获取用户的token,因为在后续的请求中需要将token放到请求消息头中作为认证。
执行作业 前提条件 已完成作业的审批和数据初始化,参考审批实时隐匿查询作业。 执行实时隐匿查询作业 作业审批以及数据初始化完成后,单击“执行”按钮。 在右侧弹出窗口的ID框中输入查询值,单击“查询”按钮进行实时隐匿查询,实时返回查询结果在下侧方框中。 图1 输入自定义属性 父主题:
执行实时预测作业 执行实时预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测Tab页,单击“模型部署”,开始部署模型。 图1 模型部署 模型部署完成后,单击“发起预测”,在系统弹窗中填写要预测的
应用场景 政企信用联合风控 金融机构对于中小微企业的信用数据通常不足,央行征信数据覆盖率有限,不良企业多家骗贷事件屡有发生。金融机构与政府部门,如税务部门、市场监管部门、水电公司等在保护各方原始数据隐私的前提下,通过多方联合建模,金融机构补充了风控模型特征维度,提升模型准确率。 优势
创建纵向联邦学习作业 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 参与方的计算节点如果是采用云租户部署,并且使用子账号进行创建的,需要参考配置CCE集群子账号权限给子账号增加权限配置
步骤3:成员接受邀请 成员接受邀请 在TICS中,成员需要先接受组织方的邀请加入空间,然后才能发布数据用于创建作业。 合作方登录TICS控制台。进入TICS控制台后,单击页面左侧“通知管理”,进入通知管理页面。 浏览通知信息,查找要加入的空间,单击其所属的“接受邀请”。 图1 通知管理入口
有关退订的更多信息,请参见退订管理。
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
创建联邦预测作业 企业A单击“联邦预测 > 批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
运行作业前,提示“Privacy rule verification failed”,怎么处理? 当在作业编辑页面编写SQL语句,并试图运行时,右上角提示“Privacy rule verification failed”。 原因是SQL语句中存在使用隐患字段的情况。 请根据具体提示
也可以通过“作业管理 > 多方安全计算 > 历史作业 > 查看结果”查看对应的结果。 父主题: 使用TICS多方安全计算进行联合样本分布统计
注册并登录管理控制台。 在用户名的下拉列表中单击“我的凭证”。 在“API凭证”页面,查看账号名和账号ID,在项目列表中查看项目ID。
发起方、参与方各自按照链代码管理章节中“安装链代码”部分的描述,上传步骤4中已保存至本地的链代码压缩包。 注意事项: “链代码名称”参数值须为“ticsrule”。 “链代码版本”须为“1.0”。 勾选需要背书的组织及Peer节点。
什么是区域和可用区? 什么是区域、可用区? 用区域和可用区来描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region)指物理的数据中心。每个区域完全独立,这样可以实现较大程度的容错能力和稳定性。资源创建成功后不能更换区域。 可用区(AZ,Availability
统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
执行批量预测作业 前提条件 参与方的计算节点如果是采用云租户部署,并且使用子账号进行创建的,需要参考配置CCE集群子账号权限给子账号增加权限配置。 执行批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”
准备工作简介 如果您是第一次使用TICS,需要完成以下准备工作: 注册账号并实名认证 配置CCE服务 购买TICS服务 授权IAM用户使用TICS 准备数据 启用区块链审计服务(可选) 父主题: 准备工作
训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业