检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。
昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。
昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。
昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。
昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。
执行如下脚本将sharegpt格式数据生成为训练data数据集。
执行如下脚本将sharegpt格式数据生成为训练data数据集。
执行如下脚本将sharegpt格式数据生成为训练data数据集。
本文使用昇腾ModelZoo的适配版本脚本替换。 下载ChatGLM-6B源代码、模型权重与数据集到容器环境。
训练作业的自定义镜像制作流程 如果您已经在本地完成模型开发或训练脚本的开发,且您使用的AI引擎是ModelArts不支持的框架。您可以制作自定义镜像,并上传至SWR服务。您可以在ModelArts使用此自定义镜像创建训练作业,使用ModelArts提供的资源训练模型。
您可以在训练作业启动文件的脚本中,通过如下方式获取复制和被复制文件夹大小,根据结果判断是否复制完毕: import moxing as mox mox.file.get_size('obs://bucket_name/obs_file',recursive=True) 其中,“get_size
操作步骤 方法1:使用mlx硬件计数器,估算ROCE网卡收发流量 统计300s内流量,统计脚本如下: x=$(cat /sys/class/infiniband/mlx5_2/ports/1/counters/port_rcv_data) sleep 300 y=$(cat /sys
图1 创建训练作业 若镜像使用使用基础镜像(二选一)中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh .
训练脚本 由算法迁移人员排查迁移后的NPU脚本是否存在问题,可以通过Beyond Compare工具比对GPU训练脚本和NPU训练脚本之间是否存在差异。例如是否GPU环境下开启了FA但是NPU上未开启FA。
图1 创建训练作业 若镜像使用使用基础镜像(二选一)中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh .
在ModelArts中创建训练作业如:预训练,执行代码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。
图1 创建训练作业 若镜像使用使用基础镜像(二选一)中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh .
原因分析 在CCE纳管过程中,需要通过cloudinit userdata机制拉取cce-agent,但是在服务器上查看没有拉cce-agent的动作,理论上该动作是cloudinit中的脚本在创建时自动执行的,可能是由于安装脚本没有注入userdata或者注入了但未执行。
git-lfs/releases/download/v3.5.1/git-lfs-linux-arm64-v3.5.1.tar.gz tar zxf git-lfs-linux-arm64-v3.5.1.tar.gz cd git-lfs-3.5.1/ bash install.sh
在ModelArts中创建训练作业如:预训练,执行代码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。