检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
低代码构建多语言文本翻译工作流 方案设计 构建流程 效果评估与优化 典型问题 附录 父主题: Agent应用实践
创建多语言文本翻译插件 准备工作 提前开通“文本翻译”服务。登录自然语言处理控制台,切换区域至华北-北京四,在“总览”页面下方开通“文本翻译”服务。 图1 开通文本翻译服务 操作流程 创建多语言文本翻译插件的流程见表1。 表1 创建多语言文本翻译插件流程 操作步骤 说明 步骤1:获取文本翻译服务Token与调用地址
助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着
本实践将使用华为云文本翻译API,请先完成创建多语言文本翻译插件操作。 操作流程 创建盘古多语言文本翻译工作流的流程见表1。 表1 创建盘古多语言文本翻译工作流流程 操作步骤 说明 步骤1:创建并配置多语言文本翻译工作流 本样例场景实现多语言文本翻译工作流的创建与配置。 步骤2:试运行多语言文本翻译工作流 本
力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出,以供下游操作,从而满足该场景下客户需求。 金融场景下,NL2JSON能力可以有效消除用户语义歧义
为了解决这些问题,构建一个自动化的多语言翻译工作流显得尤为重要。通过集成翻译工具(如机器翻译API、大型语言模型等),可以在保证翻译效率的同时,提升翻译质量,并根据实际场景和用户需求进行灵活调整。 本章将详细介绍如何利用不同的节点构建一个高效的多语言文本翻译工作流,并确保不同用户需求
典型问题 在构建和运行多语言文本翻译工作流时,可能会遇到的常见典型问题如下: 问题一:文本翻译插件运行失败,报错信息如图1。 图1 文本翻译插件运行失败 可能原因:调用文本翻译API的Token错误或失效。 解决方法:参考创建多语言文本翻译插件,重新获取Token并进行试运行。
附录 创建多语言文本翻译插件 父主题: 低代码构建多语言文本翻译工作流
训练,模型可以掌握丰富的语言模式,如语言结构、词义关系和常见的句型。 使用大规模通用数据:通常使用海量的无监督数据(如文本语料库、百科文章),这些数据覆盖广泛的领域和语言表达方式,帮助模型掌握广泛的知识。 适合广泛应用:经过预训练后,模型可以理解自然语言并具备通用任务的基础能力,
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单
广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如,若是自然语言处理任务,可能需要
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化
在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、结构和语言的理解,因此,提示词中包含的关键词、句式和语境如果与训练数据中的模式接近,模型能够“回忆”并运用已学习的知识和指令。 不同模型间效果差异。
Agent应用实践 低代码构建多语言文本翻译工作流
的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,无论是在词汇使用、
多场景测试:对多种不同场景下的prompt进行测试,确保在各种情境下系统能够有效响应: 不同语言对的翻译:如图3,针对不同的语言对(如中文到法语、俄语到西班牙语),评估翻译效果是否稳定。 图3 多场景测试-不同语言对 复杂对话场景:如图4,当用户在对话中频繁切换意图时,测试意图识别节点的应答能
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SF
没有很好地捕捉到数据特征,不能够很好地拟合数据。 损失函数 损失函数(Loss Function)是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数。它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。 推理相关概念 表3 训练相关概念说明
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。