检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
[Errno xx] Broken pipe”。 原因分析 出现该问题的可能原因如下: 在大规模分布式作业上,每个节点都在复制同一个桶的文件,导致OBS桶限流。 OBS Client连接数过多,进程/线程之间的轮询,导致一个OBS Client与服务端连接30S内无响应,超过超时时间,服务端断开了连接。
以下对resnet18在cifar10数据集上的分类任务,给出了单机训练和分布式训练改造(DDP)的代码。直接执行代码为多节点分布式训练且支持CPU分布式和GPU分布式,将代码中的分布式改造点注释掉后即可进行单节点单卡训练。 训练代码中包含三部分入参,分别为训练基础参数、分布式参数和数据相关参数。其中分布式参数由平台
型输出进行可对比的误差分析(精度)。 模型自动调优工具 AOE(Ascend Optimization Engine)是一个昇腾设备上模型运行自动调优工具,作用是充分利用有限的硬件资源,以满足算子和整网的性能要求。在推理场景下使用,可以对于模型的图和算子运行内置的知识库进行自动优化,以提升模型的运行效率。
分布式训练功能介绍 ModelArts提供了如下能力: 丰富的官方预置镜像,满足用户的需求。 支持基于预置镜像自定义制作专属开发环境,并保存使用。 丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/J
variable is used in loss computation. 原因分析 分布式Tensorflow不能使用“tf.variable”要使用“tf.get_variable”。 处理方法 请您将“启动文件”中的“tf.variable”替换为“tf.get_variable”。 父主题:
分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:
Server和ModelArts Lite Cluster使用的都是专属资源池。 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing
要长时间训练的模型的稳定性和可靠性,避免重头训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS Turbo缓存中,并可被下游业务环节继续读取并处理,结果数据可以异步方式导出到关联的OBS对象存储
推理专属预置镜像列表 ModelArts的推理平台提供了一系列的基础镜像,用户可以基于这些基础镜像构建自定义镜像,用于部署推理服务。 X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(cuda10
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
存储相关 在ModelArts中如何查看OBS目录下的所有文件?
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用自定义镜像功能 通过torch.distributed.launch命令启动 通过torch
原因分析 因为编译的时候需要设置setup.py中编译的参数arch和code和电脑的显卡匹配。 解决方法 对于GP Vnt1的显卡,GPU算力为-gencode arch=compute_70,code=[sm_70,compute_70],设置setup.py中的编译参数即可解决。
由于ModelArts本身没有数据存储的功能,ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。 AI开发过程中的输入数据、输出数据、中间缓存数据都可以在OBS桶中进行存储、
0-ubuntu16.04-x86_64.tgz。 宿主机安装的infiniband驱动版本为4.3-1.0.1.0,容器镜像中安装的infiniband驱动版本需要与宿主机版本匹配,即同为4.3-1.0.1.0。 可能部分区域的网卡较新,会出现更高版本的infiniband驱动版本,如果您遇到了i
说明,了解节点数据盘空间分配的情况,以便您根据业务实际情况配置数据盘大小。 表1 容器挂载存储的方式及差异 容器挂载存储的方式 使用场景 特点 挂载操作参考 EmptyDir 适用于训练缓存场景。 Kubernetes的临时存储卷,临时卷会遵从Pod的生命周期,与Pod一起创建和删除。
使用SDK调测多机分布式训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改7和11中的 framework_type参数值即可,例如:MindSpore框架,此处framew
line error"文档进行修复。 如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。 减慢创建文件的速度。 关闭ext4文件系统的dir_index属性,具体可参考:https://access
log”文件将会被自动上传至ModelArts训练作业的日志目录(OBS)。如果本地相应目录没有生成大小>0的日志文件,则对应的父级目录也不会上传。因此,PyTorch NPU的plog日志是按worker存储的,而不是按rank id存储的(这是区别于MindSpore的)。目前,PyTorch NPU并不依赖rank
line error"文档进行修复。 如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。 减慢创建文件的速度。 关闭ext4文件系统的dir_index属性,具体可参考:https://access