检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 无成功响应参数。 表2 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。
如何在ModelArts的Notebook实例中使用ModelArts数据集? ModelArts上创建的数据集存放在OBS中,可以将OBS中的数据下载到Notebook中使用。 Notebook中读取OBS数据方式请参见如何在ModelArts的Notebook中上传下载OBS文件?。
自如何获取ModelArts训练容器中的文件实际路径? 如果容器中的文件实际路径不清楚,可以使用Python获取当前文件路径的方法获取。 os.getcwd() #获取文件当前工作目录路径(绝对路径) os.path.realpath(__ file __) #获得文件所在的路径(绝对路径) 也可
实时视频推理、大视频文件。 创建时间 模型的创建时间。 描述 模型的描述。 操作 部署:将模型发布为在线服务、批量服务或边缘服务。 创建新版本:创建新的模型版本。参数配置除版本外,将默认选择上一个版本的配置信息,您可以对参数配置进行修改。 删除:删除对应的模型。 说明: 如果模型的版本已经部署服务,需
否 String 模型状态,可根据模型的“publishing”、“published”、“failed”三种状态执行查询。 description 否 String 描述信息,可支持模糊匹配。 offset 否 Integer 指定要查询页的索引,默认为“0”。 limit 否 Integer
导出ModelArts数据集中的数据到OBS 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,当需要将数据集中的数据存储至OBS用于后续导出使用时,可通过此种方式导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测
在训练作业列表中,单击目标训练作业名称,查看该作业的详情。 在左侧获取“输出位置”下的路径,即为训练模型的下载路径。 模型迁移到其他账号 您可以通过如下两种方式将训练的模型迁移到其他账号。 将训练好的模型下载至本地后,上传至目标账号对应区域的OBS桶中。 通过对模型存储的目标文件夹或者目标桶配置策略,
导出ModelArts数据集中的数据为新数据集 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。本章主要介绍将ModelArts数据集中的数据为新数据集的方式,新导出的数据集可直接在ModelArts控制台数据集列表中显示。
参数session即是1初始化的数据。返回的是一个字典,其中flavors值是一个列表,描述了训练服务支持的所有规格的信息。每个元素中flavor_id是可直接用于远程训练任务的计算规格,max_num是该规格的最大节点数。如果用户知道要使用的计算规格,可以略过这一步。 提交远程训练作业。
支持从OBS中导入新的数据,导入方式包括目录导入和Manifest文件导入。 dataset.import_data(path=None, anntation_config=None, **kwargs) 不同类型的数据集支持的导入方式如表1所示。 表1 不同数据集支持的导入方式 数据集类型
用户如何设置默认的kernel? 用户希望打开Notebook默认的kernel为自己自定义的kernel。 解决方式: 在Terminal里执行如下命令在镜像里指定环境变量。 # python-3.7.10这里指用户想设置的kernel名称 export KG_DEFAULT_
设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。 搜索算法配置 ModelArts内置三种超参搜索算法,用户可以根据实际情况选择对应的算法,支持多选。对应的算法和参数解析请参考以下: ba
当参数值>1时,保存模型版本次数与SAVE_TOTAL_LIMIT的值一致。 步骤二 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图2 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入:
如何减小本地或ECS构建镜像的目的镜像的大小? 减小目的镜像大小的最直接的办法就是选择尽可能小且符合自己诉求的镜像,比如您需要制作一个PyTorch2.1+Cuda12.2的镜像,官方如果没有提供对应的PyTorch或者Cuda版本的镜像,优选一个没有PyTorch环境或没有安装Cuda的镜像,而不
检查依赖包路径是否能被识别 检查训练作业使用的资源规格是否正确 建议与总结 检查依赖包是否存在 如果依赖包不存在,您可以使用以下两种方式完成依赖包的安装。 方式一(推荐使用):在创建我的算法时,需要在“代码目录”下放置相应的文件或安装包。 请根据依赖包的类型,在代码目录下放置对应文件: 依赖包为开源安装包时
如果使用OBS中转需要提供一个OBS中转路径,可以通过以下三种方式提供: 图6 通过OBS中转路径上传 仅第一次单击“OBS中转”需要提供OBS中转路径,以后默认使用该路径直接上传,可以通过上传文件窗口左下角的设置按钮更新OBS中转路径。如图10所示。 方式一:在输入框中直接输入有效的OBS中转路径,然后单击“确定”完成。
多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不同规格、不同厂商的摄像机上,这是一项非常耗时、费力的巨大工程,ModelArts支持将训练好的模型一键
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
在,则直接追加。 当被追加的源文件比较大时,例如“obs://bucket_name/obs_file.txt”文件大小超过5MB时,追加一个OBS文件的性能比较低。 如果以写入模式或追加模式打开文件,当调用write方法时,待写入内容只是暂时的被存在的缓冲区,直到关闭文件对象(