检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“不合格”,通过训练部署模型,实现产品的质检。 物体检测 物体检测项目,是检测图片中物体的类别与位置。需要添加图片,用合适的框标注物体作为训练集,进
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
阶段。 资源利用率:在作业进程IO没有变化的情况下,采集一定时间段内的GPU利用率或NPU利用率,并根据这段时间内的GPU利用率或NPU利用率的方差和中位数来判断资源使用率是否有变化。如果没有变化,则判定作业卡死。 系统预置了卡死检测的环境变量“MA_HANG_DETECT_TI
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
是否必选 参数类型 描述 delete_policy 否 Integer 是否删除标签及包含标签的样本。可选值如下: 0:只删除标签 1:删除标签及包含标签的样本 2:删除标签和包含标签的样本及其源文件 请求参数 表3 请求Body参数 参数 是否必选 参数类型 描述 labels
Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部
@modelarts:color 否 String 内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape 否 String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。
他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督
Standard数据管理 ModelArts Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts
911软件包中的AscendCloud-CV-6.3.911-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,登录后在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。
cann_8.0.rc2 不同软件版本对应的基础镜像地址不同,请严格按照软件版本和镜像配套关系获取基础镜像。 支持的模型列表和权重文件 本方案支持vLLM的v0.3.2版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称 支持vLLM
ModelArts的功能都需经过授权,可以更精确的控制子账号的权限范围,达成权限最小化的安全策略。 用工作空间限制资源访问 工作空间是ModelArts面向企业用户提供的一个高阶功能,用于进一步将用户的资源划分在多个逻辑隔离的空间中,并支持以空间维度进行访问的权限限定。目前工作空