检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Gallery工具链服务选择付费资源时,可以查看到付费资源的单价,在使用过程中,该资源可能由于平台的折扣优惠变化导致单价发生变化,而云服务是先使用后通过话单进行记录,计费会存在延时,因此,实际价格和折扣优惠可能与当前询价会不完全相同,请以真正计费的价格和优惠为准。 欠费说明 当用
径。 “输出路径”:表示新数据集的输出路径,即新数据集在完成标注后输出的路径。“输出路径”不能与“保存路径”为同一路径,且“输出路径”不能是“保存路径”的子目录。 图1 导出新数据集 数据导出成功后,您可以前往您设置的保存路径,查看到存储的数据。当导出方式选择为新数据集时,在导出
其中,“角色”支持“Labeler”、“Reviewer”和“Team Manager”,“Team Manager”只能设置为一个人。 需要注意的是:目前不支持从标注任务中删除labeler。labeler的标注必须通过审核后,才能同步到最终结果,不支持单独分离操作。 图1 当前账号添加成员
训练启动文件,所选启动文件必须是当前PyCharm训练工程中的文件。当“Algorithm source”选“Frequently-used”时,显示此参数。 Code Directory 训练代码目录,系统会自动填写为训练启动文件所在的目录,用户可根据需要修改,所选目录必须是当前工程中的目录且包含启动文件。
quant_path = ** 可以指定校准数据集路径,如calib_data="/path/to/pile-val",如不指定,默认数据集是“mit-han-lab/pile-val-backup”。 model.quantize(tokenizer, quant_config=quant_config
具体操作如下: 配置环境。 cd llm_tools/AutoSmoothQuant/ sh build.sh 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
具体操作如下: 配置环境。 cd llm_tools/AutoSmoothQuant/ sh build.sh 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
训练代码中包含三部分入参,分别为训练基础参数、分布式参数和数据相关参数。其中分布式参数由平台自动入参,无需自行定义。数据相关参数中的custom_data表示是否使用自定义数据进行训练,该参数为“true”时使用基于torch自定义的随机数据进行训练和验证。 cifar10数据集 在Notebook
如果您需要在服务器上部署相关业务,较之物理服务器,弹性云服务器的创建成本较低,并且可以在几分钟之内快速获得基于云服务平台的弹性云服务器设施,并且这些基础设施是弹性的,可以根据需求伸缩。操作指导请参考自定义购买ECS。 购买时需注意,ECS需要和SFS买到同一个VPC才能挂载SFS存储。 购买ModelArts专属资源池
"package_name": "mmcv-full" } ] } ] 当"mmcv-full"安装失败,原因可能是基础镜像中没有安装gcc,无法编译导致安装失败,此时需要用户使用线下wheel包安装。 示例如下: "dependencies": [
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
quant_path = ** 可以指定校准数据集路径,如calib_data="/path/to/pile-val",如不指定,默认数据集是“mit-han-lab/pile-val-backup”。 model.quantize(tokenizer, quant_config=quant_config
zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。 cd benchmark_tools 多模态模型脚本相对路径是llm_tools/llm_evaluation/benchmark_tools/modal_benchmark/modal_benchmark_parallel