检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Step3:安装ma-cli 在本地环境cmd中执行命令python --version,确认环境已经安装完成Python。(Python版本需大于3.7.x且小于3.10.x版本,推荐使用3.7.x版本) C:\Users\xxx>python --version Python *.*.* 执行命令pip
历史待下线案例 使用AI Gallery的订阅算法实现花卉识别 使用ModelArts PyCharm插件调试训练ResNet50图像分类模型 示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU)
在ModelArts的Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8
表1 ServiceStep 属性 描述 是否必填 数据类型 name 服务部署节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 是 str inputs 服务部署节点的输入列表
Code中打开要执行的代码文件,在执行代码之前需要选择合适的Python版本路径,单击下方默认的Python版本路径,此时在上方会出现该远程环境上所有的python版本,选择自己需要的版本即可。 图14 选择Python版本 对于打开的代码文件,单击run按钮,即可执行,可以在下
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
更新业务中的预测API的域名。 如果您使用的是VPC内部节点访问ModelArts推理的在线服务,预测API切换域名后,由于内网VPC无法识别公网域名,请提交工单联系华为云技术支持打通网络。 父主题: 产品变更公告
CreateDatasetStep 属性 描述 是否必填 数据类型 name 数据集创建节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复。 是 str inputs 数据集创建节点的输入列表。
而matplotlib不存在这个问题。 解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。 Python语言: 1 2 3 4 5 6 from matplotlib import pyplot as plt import cv2 img
使用地址下载地址,下载Miniconda3-py39_24.5.0-0安装文件(对应python 3.9)。 如果需要其他版本的Python,可以从Miniconda3文件列表下载,需注意MindSpore要下载对应其Python版本的包,上下文版本替换要保持一致。 将上述pip源文件、*.list文件、*
04-x86_64(推荐) python2.7、python3.6、python3.7的运行环境搭载的PyTorch版本为1.0。 python2.7、python3.6、python3.7、pytorch1.4-python3.7、pytorch1.5-python3.7,表示该模型可同时在CPU或GPU运行。
创建新的虚拟环境并保存到SFS目录 克隆原有的虚拟环境到SFS盘 重新启动镜像激活SFS盘中的虚拟环境 保存并共享虚拟环境 前提条件 创建一个Notebook,“资源类型”选择“专属资源池”,“存储配置”选择“SFS弹性文件服务器”,打开terminal。 创建新的虚拟环境并保存到SFS目录
标注内容是否被截断(0表示完整)。 occluded String 标注内容是否被遮挡(0表示未遮挡)。 difficult String 标注目标是否难以识别(0表示容易识别)。 confidence Double 置信度,数值类型,范围0<=confidence<=1,表示机器标注的置信度。 position
问题现象 使用自定义镜像创建实例启动后,打开JupyterLab>新建Notebook,选不到kernel。 原因分析 自定义镜像的python环境没有注册。 解决方案 在Terminal里执行命令排查实例存在几个Conda环境。 conda env list 执行如下命令分别
Snt9b硬件,为用户提供了开箱即用的预训练和微调训练方案。 操作流程 图1 操作流程图 表1 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 购买并开通模型运行所需的资源环境。 准备代码 准备AscendSpeed代码、分词器Tokenizer和推理代码。 准备数据 准备数据,可以用Al
检查本地环境是否已安装Python。如果环境中没有安装Python,可从Python官网下载并安装合适的Python版本。Python版本需大于3.7.x版本且小于3.10.x版本,推荐使用3.7.x版本。 在本地环境执行命令python --version,显示如下内容说明Python已安装。
ModelArts的Notebook是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。
断(0表示完整)。 occluded:必选字段,标注内容是否被遮挡(0表示未遮挡) difficult:必选字段,标注目标是否难以识别(0表示容易识别)。 confidence:可选字段,标注目标的置信度,取值范围0-1之间。 bndbox:必选字段,标注框的类型,标注信息请参见
/home/ma-user/anaconda3/envs/my-env python-3.7.10 /home/ma-user/anaconda3/envs/python-3.7.10 /opt/conda/envs/my-env
wn command line flag 'task_index' 原因分析 运行参数中未定义该参数。 在训练环境中,系统可能会传入在Python脚本里没有定义的其他参数名称,导致参数无法解析,日志报错。 处理方法 参数定义中增加该参数的定义,代码示例如下: parser.add