检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。 FASP剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
DEFAULT_CONDA_ENV_NAME=python-3.7.10 您可以使用Python命令启动训练脚本。启动命令示例如下: python /home/ma-user/modelarts/user-job-dir/code/train.py 方式二:使用“conda env python”的绝对路径。
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
本文档中的模型运行环境是ModelArts Lite Server。 镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
解决方案二(默认全部使用volcano调度器): CCE页面上配置中心修改默认调度器为kube-scheduler。 删除maos-node-agent的pod(重启pod)。 CCE页面上删除节点上的污点A200008。 ModelArts上重置节点。 CCE页面上配置中心修改默认调度器为volcano。
https://gitee.com/ascend/msit.git 进入到msit/msmodelslim的目录;并在进入的msmodelslim目录下,运行安装脚本install.sh。 cd msit/msmodelslim bash install.sh 执行install过程会下载依赖包,因此需要确保能够访问到pip源。
A系列裸金属服务器无法获取显卡如何解决 GPU裸金属服务器无法Ping通如何解决 GPU A系列裸金属服务器RoCE带宽不足如何解决? GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML 训练速度突然下降以及执行nvidia-smi卡顿如何解决?
[worker-0] [耗时: 秒] 训练输入(参数名称:)下载失败,失败原因: [worker-0] 正在安装Python依赖包,导入文件: [worker-0] [耗时: 秒] Python依赖包安装完成,导入文件: [worker-0] 训练作业开始运行 [worker-0] 训练作业运行结束,退出码
资源购买: 购买对象存储服务OBS 购买容器镜像服务SWR 创建网络 购买ModelArts专属资源池 基本配置: 权限配置 obsutils安装和配置 (可选)工作空间配置 训练: 线下容器镜像构建及调试 上传镜像 上传数据和算法至OBS(首次使用时需要) 使用Notebook进行代码调试
Step6 推理服务的高阶配置(可选) 如需开启以下高阶配置,请在Step3 配置NPU环境时增加需要开启的高阶配置参数。 词表切分 在分布式场景下,默认不使用词表切分能提升推理性能,同时也会增加单卡的显存占用。不建议开启词表并行,如确需使用词表切分,配置以下环境变量。 export
面,完成基本配置后单击“下一步:网络配置”,进入网络配置页面,选择1中打通的VPC,完成其他参数配置,完成高级配置并确认配置,下发购买弹性云服务器的任务。等待服务器的状态变为“运行中”时,弹性云服务器创建成功。单击“名称/ID”,进入服务器详情页面,查看虚拟私有云配置信息。 图4
此处介绍如何通过编写Dockerfile文件制作自定义镜像的操作步骤。 安装Docker。 以Linux x86_64架构的操作系统为例,获取Docker安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL
使用此类镜像做基础镜像,安装自己需要的引擎版本和依赖包,可扩展性更高。并且这些镜像预置了一些开发环境启动所必要的配置,用户无需对此做任何适配,安装所需的软件包即可使用。 此类镜像为最基础的镜像,主要应对用户做自定义镜像时基础镜像太大的问题,所以镜像中未安装任何组件;如果需使用OBS
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
制作自定义镜像 目标:构建安装好如下软件的容器镜像,并使用ModelArts训练服务运行。 ubuntu-18.04 cuda-11.1 python-3.7.13 pytorch-1.8.1 此处介绍如何通过编写Dockerfile文件制作自定义镜像的操作步骤 。 安装Docker。 以Linux
检查依赖包是否存在 如果依赖包不存在,您可以使用以下两种方式完成依赖包的安装。 方式一(推荐使用):在创建我的算法时,需要在“代码目录”下放置相应的文件或安装包。 请根据依赖包的类型,在代码目录下放置对应文件: 依赖包为开源安装包时 在“代码目录”中创建一个命名为“pip-requirements
如果存在之前能跑通,什么都没修改,过了一阵跑不通的情况,先去排查跑通和跑不通的日志是否存在pip源更新了依赖包,如下图,安装之前跑通的老版本即可。 图1 PIP安装对比图 推荐您使用本地Pycharm远程连接Notebook调试。 如果上述情况都解决不了,请联系技术支持工程师。 建议与总结
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y