检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
在“数据标注”页面,会显示自动标注的进度,如果自动标注完成,标注进度为100%。 图1 自动标注完成。 标注完成后,您可以单击“标注结果确认”中的“前往确认”,进入标注概览页。 在标注概览页单击右上方的“开始标注”,进入手动标注数据页面,针对“已标注”的数据进行核对和检查。针对标注错误的数据修改标注。
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
数据集输出位置 待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 说明: “数据集输出位置”不能与“数据集输入位置”为同一路径,且不能是“数据集输入位置”的子目录。“数据集输出位置”建议选择一个空目录。
操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 如果您上传的是未标注数据,您单击数据集操作列的“标注”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 合并标签 针对所选择的训练数据集,如果每个标签的样本数量太少,可以选择合并标签。
待新建的数据集名称。 描述 数据集简要描述。 数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有
数据集输入位置 训练数据存储至OBS的位置。 单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中
检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题:
并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型
保证图片质量:不能有损坏的图片。 目前支持的格式包括JPG、JPEG、PNG、BMP。 训练数据集 本样例训练数据集使用未标注数据。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。 每个分类标签
如果之前的版本还没开发完,会弹出“开发新版本”提示框,单击“确认”,进入新版本的开发页面。 图1 开发新版本 在新版本的应用开发页面,您可以基于上一版本的工作流配置,更新工作流开发的各个步骤,重新部署服务。 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
Pro管理控制台,单击“视觉套件”卡片的“进入套件”。 进入视觉套件控制台。 在左侧导航栏选择“应用开发>工作台”。 默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页。 在“开发版本列表”右侧,单击“开发新版本”。 进入新版本工作流的开发页面。 如
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
行业场景的业务数据,快速获得定制服务。 适用场景 知识图谱、文本理解、智能问答、舆情分析等实体抽取场景。 优势 针对多场景领域提供预训练模型,支持抽取文本中的实体,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。