检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
时,每个超节点内预留的冗余节点数量。 方式二:在资源池详情页的规格页签设置 图2 规格页签设置 图3 设置高可用冗余能力 方式三:在扩缩容页面设置 图4 设置高可用冗余能力 设置单节点为高可用冗余节点 开启高可用冗余 挑选无业务节点作为高可用冗余节点使用,在资源池详情页,“节点”
注:labels中用-100填充的地方,表示会被loss_mask给mask掉 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 若用户要自定义数据处理脚本并且单独执行,同样以
注:labels中用-100填充的地方,表示会被loss_mask给mask掉 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以
csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets
csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets
3.wav 表格 支持从OBS导入csv文件,需要选择文件所在目录,其中csv文件的列数需要跟数据集schema一致。支持自动获取csv文件的schema。 ├─dataset-import-example │ table_import_1.csv │
csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets
csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets
aset中则直接选中数据集文件,超参:processed_data_dir则需选中存放已处理好数据集的目录文件夹。 “输入”和“输出”中的获取方式全部选择为:超参。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置超参 单击“增加
在Notebook中,无法直接使用默认版本的torchvision获取数据集,因此示例代码中提供了三种训练数据加载方式。 cifar-10数据集下载链接,单击“CIFAR-10 python version”。 尝试基于torchvision获取cifar10数据集。 基于数据链接下载数据并解压
yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide 若查看启动作
“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 使用Opencompass精度测评工具 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构
务中,并通过后续的数据集标注节点进行标注。 对于一些已标注好的原始数据,可以直接导入到数据集或者标注任务中,并通过后续的数据集版本发布节点获取带有版本信息的数据集对象。 属性总览 您可以使用DatasetImportStep来构建数据集导入节点,DatasetImportStep结构如下。
{Human} "### Response:" 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 同样以 llama2
{Human} "### Response:" 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以
{Human} "### Response:" 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 同样以 llama2
{Human} "### Response:" 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以
{Human} "### Response:" 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以
{Human} "### Response:" 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定
{Human} "### Response:" 自定义handler 参考MOSSMultiTurnHandler的实现,继承想要的通用的父类,实现_filter方法,然后在数据预处理的参数里指定自己的handler名称即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以