检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注
设置告警通知 先在SMN创建一个主题,用于配置告警通知规则。更多内容请参考消息通知服务用户指南。 创建主题 进入“消息通知服务”控制台,单击“主题管理 > 主题”,进入“主题”页面。 单击“创建主题”填写主题名称,选择企业项目后,单击确定即可创建一个主题。 单击主题名称“操作”列的“更多
“订阅模型”列表,单击“AI Gallery订阅模型”,跳转至“AI Gallery”模型列表,选择模型进行订阅。订阅模型的操作指导请参见买家指导(订阅模型)。 “自定义模型”列表,单击“AI Gallery订阅模型”,跳转至“AI Gallery”模型列表,选择模型进行订阅。 将订阅模型部署为服务 针对订阅模型,支持将模型一键部署为服务。
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├── ...
文件,来安装依赖以及下载完整代码。 ECS中构建新镜像方案:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会下载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 如果用户希
sh文件,来安装依赖以及下载完整代码。 ECS中DockerFIle构建新镜像:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会尝试自动下载三方依赖源码并安装依赖的pip包,并将以上源码打包至镜像环境中; 训练作业的资源池以及ECS都需要连通
Standard进行AI开发过程中的输入数据、输出数据、中间缓存数据都可以在OBS桶中进行存储、读取。因此,建议您在使用ModelArts之前先创建一个OBS桶。 创建OBS桶可以提前完成,也可以在后续使用到时再创建。 创建OBS桶用于ModelArts存储数据 准备资源(可选) 创建Standard专属资源池
Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。具体过程请参考创建OBS桶,例如桶名:standard-llama2-13b。 由于Mo
Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。具体过程请参考创建OBS桶,例如桶名:standard-llama2-13b。 由于Mo
参数 参数类型 描述 resources PoolResource object 节点池中的资源信息列表,包括资源规格和相应规格的资源数量,自定义配置等。 表6 PoolResource 参数 参数类型 描述 flavor String 资源规格名称,比如:modelarts.vm.gpu
peline.sh,具体修改代码内容以及位置,如下所示。 训练作业中存在2个代码目录,一个是从OBS上传到ModelArts Standard训练容器中的代码目录OBS_CODE_DIR,一个是后续构建新镜像步骤ECS中构建新镜像(二选一)中镜像的代码目录CODE_DIR。修改代码如图1。
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
支持的rope scaling类型 本方案支持的rope scaling类型包括linear、dynamic和yarn,其中linear方法只支持传入一个固定的scaling factor值,暂不支持传入列表。 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.907中的AscendCloud-LLM-xxx
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6