检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
name/obs_file.txt",path="/home/user/obs_file.txt") 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
区域选择“Resource Monitor”,展示“CPU使用率”和“内存使用率”。 图22 资源监控 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。 解决方案: 方法1:使用导入功能。将图片上传至OBS任意目录,通过
6-gpu"。修改完成后,重新执行导入模型和部署为在线服务的操作。 参数设置完成后,单击“下一步”,确认规格参数,单击“提交”,完成在线服务的部署。 您可以进入“模型部署 > 在线服务”页面,等待服务部署完成,当服务状态变为“运行中”时,表示服务部署成功。预计时长2分钟左右。 在线服务部署完成后,您可以单
开发环境的Notebook实例 exemlProject 自动学习项目 exemlProjectInf 自动学习项目的在线推理服务 exemlProjectTrain 自动学习项目的训练作业 exemlProjectVersion 自动学习项目的版本 workflow Workflow项目 pool
查询自动学习资源规格无需此参数。 engine_id 否 Long 指定作业的引擎ID,默认为“0”。查询自动学习资源规格无需此参数。 project_type 否 Integer 项目类型。默认为“0”。 0:非自动学习项目。 1:自动学习,图像分类。 2:自动学习,物体检测。
数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据
推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
ster”已指向最新一次的提交。同时在GitHub对应仓库的commit记录中也可以查找到对应的信息。 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
行历史。 图5 在Notebook Job Definitions页签单击任务名称 图6 设置定时任务 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
下线公告 【下线公告】华为云ModelArts自动学习下线公告 【下线公告】华为云ModelArts自动学习模块的文本分类功能下线公告 【下线公告】华为云ModelArts服务旧版数据集下线公告 【下线公告】华为云ModelArts服务模型转换下线公告 【下线公告】华为云ModelArts
在开发环境中创建MindInsight可视化作业流程 Step1 创建开发环境并在线打开 Step2 上传Summary数据 Step3 启动MindInsight Step4 查看训练看板中的可视化数据 Step1 创建开发环境并在线打开 在ModelArts控制台,进入“开发空间> Noteb
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。
实时推理的部署及使用流程 在创建完模型后,可以将模型部署为一个在线服务。当在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证方式、
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
上传OBS文件到JupyterLab 在Notebook的JupyterLab中,支持将OBS中的文件下载到Notebook。注意:文件大小不能超过10GB,否则会上传失败。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts
调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。
是否有“运行中”的Workflow列表。如果有,单击Workflow列表中“操作 > 删除”即可停止计费。 进入“ModelArts>自动学习”页面,检查是否有“运行中”的项目。如果有,单击项目列表中“操作 > 删除”即可停止计费。 进入“ModelArts>开发空间>Noteb
不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略