检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch
支持将开发好的服务或技能一键部署到端、边、云的各种场景上。 在线部署:将服务或技能部署为在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。将应用部署为一个Web Service,并且提供在线的测试与监控能力。 HiLens部署:将服务或技能部署在边缘设备HiLens
练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “语种”指文本数据的语言种类。 确认信息后,单击“开始训练”。
预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 确认信息后,单击“开始训练”。 模型训练一般
配额说明 本服务在使用数据集、在线服务、训练任务资源时涉及配额限制。 其配额查看及修改请参见关于配额。
文本分类工作流为例,介绍如何使用自然语言处理套件中的文本分类工作流开发应用,通过上传训练数据、训练模型,将生成的模型部署为在线服务。部署完成后,用户可通过在线服务分类文本内容。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作。使用通用文本分类工作流开发应用的步骤如下所示: 步骤1:准备数据
监控应用 在线部署的应用,您可以在开发并部署服务后监控应用,包括应用的基本信息、在线测试应用、查看应用历史版本、查看应用的调用指南。 前提条件 已开发并部署服务,详情请见部署服务。 进入应用监控页面 登录ModelArts Pro管理控制台,单击“视觉套件”卡片的“进入套件”。 进入视觉套件控制台。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
待部署的服务名称,单击可修改服务默认服务名称。 描述 待部署服务的简要说明。 服务部署方式 当前只支持在线部署方式。 计算节点规格 界面选择计算规格。 服务自动停止 设置服务自动停止的时间,在线服务运行状态在所选的时间点后自动停止,同时在线服务也停止计费。 部署成功后,页面显示“服务部署成功”。 单击“查看应用
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前
部署服务后,调用API失败怎么办? 在ModelArts Pro使用预置工作流部署服务后,可通过调用API和SDK调用已部署的在线服务。如果调用API失败,可根据返回的错误码及错误信息解决问题,具体的错误码说明请见表1。 表1 API调用指导 行业套件 调用API方法 错误码 文字识别套件
会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前
估状态为端到端地对待识别图片自动分类并进行结构化识别。 上传在线图片 单击“在线URL”,切换至“在线URL”页签。在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域,上传在线图片作为测试图片。 上传图片后,右侧会显示模板识别结果,包括“模板ID”、“模板名”、“置信度”。
进入“应用监控”页面,您可以查看当前版本应用的“基本信息”、“在线测试”、“历史版本”和“调用指南”。 监控基本信息 在“应用监控”页面,您可以查看应用的基本信息,针对不准确的信息,您可以单击“修改”,在右侧弹出的对话框中修改应用的部署信息。 图2 应用基本信息 在线测试应用 在“应用监控”页面,您可以针
单击“上一步”,对当前模板进行修改。 如果识别结果正确,可单击“下一步”,部署模板。 上传在线图片 在“应用开发>评估”页面,单击“在线URL”,切换至“在线URL”页签。 图3 上传在线图片 在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域。