检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在MaaS应用实践中心查看应用解决方案 ModelArts Studio大模型即服务平台提供了MaaS应用实践中心,为具体的应用场景提供一整套解决方案。 应用中心介绍 “MaaS应用实践中心”提供基于行业客户应用场景的AI解决方案。MaaS提供的模型服务和华为云各AI应用层构建工具之间相互连通,通过灵活的组合
Cluster上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为用户提供推理部署方案,帮助用户使能大模型业务。 约束限制 本方案目前仅适用于部分企业客户。 本文档适配昇腾云ModelArts
元模型存储路径 如果元模型来源于对象存储服务,显示元模型的存放路径。 容器镜像存储路径 如果元模型来源于容器镜像,显示容器镜像存储路径。 AI引擎 如果元模型来源于训练作业/对象存储服务,显示模型使用的AI引擎。 引擎包地址 如果元模型来源于对象存储服务(AI引擎为Custom),显示引擎包地址。
公共参数。模型ID。通过调用查询AI应用列表接口可以获取。 src_path 否 String batch服务类型必选。批量任务输入数据的OBS路径。 req_uri 否 String batch服务类型必选。批量任务中调用的推理接口,即模型镜像中暴露的REST接口,需要从模型的config
ECS、BMS节点创建失败? 查看资源池失败报错信息: 包含错误码,如:Ecs.0000时,可查看弹性云服务器 ECS_错误码查看详细的错误信息及处理措施。 包含错误码,如:BMS.0001时,可查看裸金属服务器 BMS_错误码查看详细的错误信息及处理措施。 包含错误码,如:CCE.01400001时,可查看云容器引擎
使用Notebook代码样例 在AI Gallery中,您可以查找并直接打开使用Notebook实例。 前提条件 注册并登录华为云,详细操作请参见准备工作。 打开Notebook实例 登录“AI Gallery”。 选择“资产集市 > Notebook”,进入Notebook页面
单个弹性公网IP用于单个Server服务器:为单台Server服务器绑定一个弹性公网IP,该Server服务器独享网络资源。 单个弹性公网IP用于多个Server服务器:一个VPC配置一个EIP(弹性公网IP),通过NAT网关配置进行EIP资源共享,实现该VPC下的所有Server服务器均可以通过该E
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q awq 或者--quantization awq 父主题:
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q awq 或者--quantization awq 父主题:
rch 1.8、ffmpeg 3和gcc 8,构建一个面向AI开发的新环境。 主要流程如下图所示: 图1 构建与调测镜像流程 本案例适用于华为云-北京四Region。 Notebook自定义镜像规范 制作自定义镜像时,Base镜像需满足如下规范: 基于昇腾、Dockerhub官网
码目录下data/dataset_info.json文件;请务必在dataset_info.json文件中添加数据集描述;具体示例如下。 上传自定义数据到指定目录 将下载的原始数据存放在{work_dir}/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。具体步骤如下:
# 第三方依赖 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤三:上传代码包和权重文件中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmar
SFT和LoRA微调使用的Alpaca数据集下载:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下:
创建数据集:前往创建数据集页面创建一个新的数据集。具体操作请参考创建ModelArts数据集。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。 “训练规格” 选择自动学习训练节点所使用的资源规格,以实际界面显示为准,将会根据不同的规格计费。
模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。 “训练规格” 选择自动学习训练节点所使用的资源规格,以实际界面显示为准,将会根据不同的规格计费。
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step4 启动AWQ量化服务 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q awq 或者--quantization awq 父主题:
指导:JupyterLab常用功能介绍。 由于CodeLab的存储为系统默认路径,在使用“上传文件”或“下载文件至本地”时,只能使用JupyterLab页面提供的功能。 如需使用大文件上传和下载的功能,建议您前往Notebook,创建一个收费的实例进行使用。 切换规格。 Code
txt # 第三方依赖 ├── service_predict.py # 发送请求的服务 上传精度测试代码到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-3rdLLM-x.x.x.zip并解压,无需重复执行。 进入benchm
=ray】,其他参数与正常启服务一致即可。具体参考本文单机场景下OpenAI服务的API接口启动在线推理服务方式。 推理请求测试 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见启动在线推理服务。 通过OpenAI服务API接口启动服务使用以下推理测试命令。${d
模型适配 MindSpore Lite是华为自研的推理引擎,能够最大化地利用昇腾芯片的性能。在使用MindSpore Lite进行离线推理时,需要先将模型转换为mindir模型,再利用MindSpore Lite作为推理引擎,将转换后的模型直接运行在昇腾设备上。模型转换需要使用converter_lite工具。