检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
node-type是集群节点类型。其中,worker表示工作节点,controller表示主控节点。 在服务器执行如下命令,判断docker是否安装成功。 systemctl status docker 在服务器执行如下命令,判断edge agent是否安装成功。 hdactl info 配置hda
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
边缘服务部署流程 边缘部署是指将模型部署到用户的边缘设备上。这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池。然后利用盘古大模型服务将算法部署到这些边缘资源池中。 图1 边缘资源池创建步骤 当前仅支持预置模型(盘古-NLP-N2-基础功能模型)和基于
请求什么类型的操作。 GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时
在“创建边缘节点”页面中,填写节点名称,配置AI加速卡与日志信息,单击“确定”。 如果节点有npu设备需选择“AI加速卡 > Ascend”,并选择加速卡类型。 如果节点没有加速卡,则选择“AI加速卡 > 不使用”。 单击“立即下载”,下载设备证书和Agent固件,并将设备证书与Agent固件分别重命名为license
部署为边缘服务 边缘服务部署流程 边缘部署准备工作 注册边缘资源池节点 搭建边缘服务器集群 安装Ascend插件 订购盘古边缘部署服务 部署边缘模型 调用边缘模型 父主题: 部署盘古大模型
如何调整训练参数,使模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。
先创建一个IAM用户,并设置该用户在盘古平台中的角色,控制他们对资源的使用范围。 IAM权限 默认情况下,管理员创建的IAM用户(子用户)没有任何权限,需要将其加入用户组,并对用户组授权,才能使得用户组中的用户获得对应的权限。授权后,用户就可以基于被授予的权限对云服务进行操作。
较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主要用于控制模型输出的多样性。核采样
若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。 扩写:根据段落的其中一句或者一段续写成完整的段落。 若您的无监督文档没有任何结构
"先生,您家的网络无法连接是吗 请问您尝试重新插拔网线吗?"], "target": "是的,我试了 还是不行"} 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中
在反问时需要指明“上面的xxx”。例如:“为什么你认为上面的xxx是xxx类别?为什么上面的xxx不是xxx类别?”,否则模型会认为用户反问是个新问题,而非多轮并回复“您并没有给我xxx问题,请给我具体的xxx问题,以便我更好地解答。” 复述任务要求 可以让模型复述prompt中的要求,考察模型是否理解。 比如“
如果不一致,返回空值 # 例如,查询“有没有数据?”这个问题和“test-semantic-cache-vector-001”这个会话标识,就无法从缓存中获取到任何答案,因为这个问题和之前保存的问题都不一致 query_not = "有没有数据?" assert cache.lookup(query_not)
使用AK/SK认证时,您可以基于签名算法使用AK/SK对请求进行签名,也可以使用专门的签名SDK对请求进行签名。详细的签名方法和SDK使用方法请参见API签名指南。 如果之前没有生成过AK/SK,可登录“我的凭证”界面,选择“访问密钥 > 新增访问密钥”来获取。 签名SDK只提供签名功能,与服务提供的SDK不同,使用时请注意。
l集群为例,示例集群信息如下表。 表1 示例集群信息 集群名 节点类型 节点名 规格 备注 largemodel controller ecs-edge-XXXX 鲲鹏通用计算型|8vCPUs|29GiB|rc3.2xlarge.4镜像 EulerOS 2.9 64bit with
一致,返回空值 //例如,查询“有没有数据?”这个问题和“test-semantic-cache-vector-001”这个会话标识,就无法从缓存中获取到任何答案,因为这个问题和之前保存的问题都不一致 String query_not="有没有数据?"; Assertions.assertNull(cache
答复:已为您预订2023年6月29日14:00至16:00的线上会议,请准时参加。 多轮执行增强 上述的例子中实际运行时只提供给模型多轮的对话,并没有提供工具执行的过程,为了让大模型的效果更好,可以传入agent_session。 用户: 定个金桥203会议室的会议 助手: 好的,请问会
BLEU指标只考虑n-gram词的重叠度,不考虑句子的结构和语义。 模型优化建议 如何基于指标的分值对训练任务进行调整:一般横向比较两个模型时,可以参考该指标。然而,指标没有一个明确的阈值来指示何时模型效果差。因此,单靠该指标无法直接决定任务的调整策略。 如果指标低是由于提示词(prompt)设置不合理,可以通