检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers 设置GPTQC
否有所提升。 # shell cd /home_host/work benchmark --modelFile=diffusers/scripts/mindir_models/text_encoder.mindir --device=Ascend 上述命令中:modelFile指
5、训练过程中报"ModuleNotFoundError: No module named 'multipart'"关键字异常,可更新python-multipart为0.0.12版本,具体请参考6-问题6:No module named 'multipart'"报错: 。 父主题: 主流开源大模型基于Lite Server适配LlamaFactory
clear_hard_property 否 Boolean 是否清空难例属性。可选值如下: true:清空难例属性(默认值) false:不清空难例属性 description 否 String 版本描述信息,默认为空,长度为0-256位,不能包含!<>=&"'特殊字符。 export_images 否 Boolean
type 否 String 参数的类型,枚举值如下: str:字符串 int:整型 bool:布尔类型 float:浮点型 description 否 String Workflow工作流配置参数的描述。 example 否 Object Workflow工作流配置参数的样例。
annotations object 资源池的注释信息。 表5 annotations 参数 是否必选 参数类型 描述 os.modelarts/description 否 String 资源池描述信息,用于说明资源池用于某种指定场景。不能包含特殊字符!<>=&"'。 os.modelarts/order
团队标注任务ID。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 dataset_id 否 String 数据集ID。 description 否 String 团队标注任务描述,长度为0-256位,不能包含^!<>=&"'特殊字符。 task_id 否 String 团队标注任务ID。
com/casper-hansen/AutoAWQ.git AutoAWQ-0.2.5 cd ./AutoAWQ-0.2.5 export PYPI_BUILD=1 pip install -e . 需要编辑“examples/quantize.py”文件,针对NPU进行如下适配工作,以支持在NPU上进行量化。
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
行Session鉴权。 登录ModelArts控制台,在“开发环境 > Notebook”中创建Notebook实例,在Terminal或ipynb文件中直接调用ModelArts SDK的接口。在Notebook中调用SDK,可直接参考接口说明,执行OBS管理、作业管理、模型管理和服务管理等操作。
Megatron-DeepSpeed pip install -r requirements.txt -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com pip install
、数字、中划线和下划线。同时'default'为系统预留的默认工作空间名称,用户无法自己创建名为'default'的工作空间。 description 否 String 工作空间描述,默认为空。长度限制为0-256字符。 表4 grants 参数 是否必选 参数类型 描述 user_id
executed on the NPU, and enable aic_metrics=torch_npu.profiler.AiCMetrics.PipeUtilization.\n" "level2: Collect GE and Runtime data, HCCL and AI CPU
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers 设置GPTQC
profiler._ExperimentalConfig aic_metrics=torch_npu.profiler.AiCMetrics.PipeUtilization profiler_level=torch_npu.profiler.ProfilerLevel.Level1 d
String 创建时间。 name 否 String 执行记录名称。 execution_id 否 String 工作流执行ID。 description 否 String 执行记录描述。 status 否 String 执行记录状态。 workspace_id 否 String 工作空间ID。
(huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers 设置GPTQC