检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs
ModelLink中。 git clone https://gitee.com/ascend/ModelLink.git cd ModelLink git checkout 8f50777 cd .. git clone https://gitee.com/lmzwhu/Megatron-LM
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。
说明用户输入了有效的仓库地址,同时给出该仓库下所有的分支供选择,选择完成后单击“克隆”开始Clone仓库。 GitHub开源仓库地址:https://github.com/jupyterlab/extension-examples 图3 输入有效的GitHub开源仓库地址 Clone仓库的过程中会将进度展示出来。
确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST https://{iam_endpoint}/v3/auth/tokens 请求消息头:Content-Type →application/json
确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST https://{iam_endpoint}/v3/auth/tokens 请求消息头:Content-Type →application/json
下载model_zoo相关数据 从以下5个链接下载model_zoo数据 https://huggingface.co/lmsys/vicuna-7b-v1.5 https://huggingface.co/lmsys/vicuna-13b-v1.5 https://storage.googleapis.c
ModelLink中。 git clone https://gitee.com/ascend/ModelLink.git cd ModelLink git checkout 8f50777 cd .. git clone https://gitee.com/lmzwhu/Megatron-LM
的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。
配置正确的Region、Projects、Endpoint信息。 例如:Endpoint配置不正确也会导致认证失败。 错误示例:Endpoint参数前面带了https,正确的配置中不需要有https。 图1 配置ToolKit 二、未配置hosts文件或者hosts文件信息配置不正确 在本地PC的hosts文件中配置域名和IP地址的对应关系。
问通道、不同的传输协议)。 图1 认证方式、访问通道、传输协议 当前ModelArts支持访问在线服务的认证方式有以下方式(案例中均以HTTPS请求为例): Token认证:Token具有时效性,有效期为24小时,需要使用同一个Token鉴权时,可以缓存起来,避免频繁调用。 AK
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
接口启动2种方式。详细启动服务与请求方式参考:https://docs.vllm.ai/en/latest/getting_started/quickstart.html。 以下服务启动介绍的是在线推理方式,离线推理请参见https://docs.vllm.ai/en/lates
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
"registry-mirrors":[ "https://docker.m.daocloud.io", "https://docker.jianmuhub.com", "https://huecker.io", "https://dockerhub.timeweb.cloud", "https://dockerhub1