检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用户自定义执行权重转换参数修改说明 同样以 llama2 为例,用户可直接编辑 scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging
输入默认为random。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅当--dataset-type为sharegpt或者human-eval的时候生效。
执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 进入benchmark_tools目录下,切换conda环境并安装依赖。 cd /home
在pip文件夹中创建一个名为pip的文本文件,并将后缀名由“.txt”改为“.ini”。文件内容示例如下: 其中,index-url为pip源ip地址,使用时需自行替换。本示例以华为源为例,具体如下: [global] index-url = https://mirrors.huaweicloud.
换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face
后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face
一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ { "instruction": "指令(必填)"
一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ { "instruction": "指令(必填)"
换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face
后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face
后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face
后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face
--port:推理服务端口8080。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如
eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅当--dataset-type为sharegpt或者human-eval的时候生效。
控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。 temperature
一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ { "instruction": "指令(必填)"
eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,仅当--dataset-type为sharegpt或者human-eval的时候生效。
通过PTA_TORCHAIR_DECODE_GEAR_LIST设置动态分档位后,在PTA模式下,会根据服务启动时的max_num_seqs参数对档位进行调整,使得最终的最大档位为max_num_seqs,因此,请根据使用场景合理设置动态分档以及max_num_seqs参数,避免档位过大导致图编译错误。 MoE模型依赖
Gallery微调大师训练模型或使用AI Gallery在线推理服务部署模型。 如果进行模型微调,则“训练任务类型”选择“自定义”。 如果部署为推理服务,则“推理任务类型”选择“自定义” 自定义模型规范(训练) 当托管自定义模型到AI Gallery时,如果模型要支持AI Galle
ma2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,修改多机config.yaml模板中的${command}命令如下。多机启动需要在每个节点上执行。MASTER_ADDR为当前ssh远程主机的IP地址(私网IP)。 多机执行命令为:sh script