检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的需要生成更为确定的内容,可以使用较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主
项目ID,获取方法请参见获取项目ID。 workflow_id 是 String Workflow ID,获取方式如下: 在“Agent开发”页面,左侧导航栏选择“工作台 > 工作流”,在所需工作流中单击“ > 复制ID”。 conversation_id 是 String 会话ID,唯一标识每个会
用于存放模型推理结果的OBS路径。 输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m
hPa、50hPa。 Year选择2021,Month选择July,Day选择16。 Time选择00:00、06:00、12:00、18:00。 Geographical area选择Whole available region。 Format选择NetCDF(experimental)。
请求完全成功,同时HTTP响应不包含响应体。 在响应OPTIONS方法的HTTP请求时返回此状态码。 205 Reset Content 重置内容,服务器处理成功。 206 Partial Content 服务器成功处理了部分GET请求。 300 Multiple Choices 多种选择。请求的资
用Python脚本转换自定义格式为jsonl格式。 图2 创建导入任务 单击“选择路径”,在“存储位置”弹窗中选择需导入的数据,单击“确定”。 图3 选择导入的数据 填写“数据集名称”和“描述”,可选择填写“拓展信息”。 拓展信息包括“数据集属性”与“数据集版权”: 数据集属性。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布 > 数据评估”,单击界面右上角“创建评估任务”。 在“数据集选择”页签选择需要评估的加工数据集,并设置抽样样本的数量。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。
需空间。 在左侧导航栏中选择“数据工程 > 数据发布 > 数据流通”,单击界面右上角“创建流通任务”。 在“创建流通任务”页面,选择数据集模态,如“文本 > 预训练文本”类型的数据集。 图1 选择数据集模态 选择数据集,单击“下一步”。 在“格式配置”选择发布格式。由于数据工程需
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布 > 数据评估”,单击界面右上角“创建评估任务”。 在“数据集选择”页签选择需要评估的加工数据集,并设置抽样样本的数量与字符数。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布 > 数据评估”,单击界面右上角“创建评估任务”。 在“数据集选择”页签选择需要评估的加工数据集,并设置抽样样本的数量。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。
在左侧导航栏中选择“数据工程 > 数据发布 > 数据流通”,单击界面右上角“创建流通任务”。 在“创建流通任务”页面,选择数据集模态,如“图片 > 图片+Caption”类型的数据集。 图1 选择数据集模态 选择数据集,单击“下一步”。 在“格式配置”选择发布格式。由于数据工
除了短视频风格的口播文案,营销文案还可以根据需求生成不同风格的文案,如小红书风格、知乎风格,或爆款标题等。 选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于大模型
文本类数据集格式要求 文件内容 文件格式 文件要求 文档 txt、mobi、epub、docx、pdf 单个文件大小不超过50GB,文件数量最多1000个。 网页 html 单个文件大小不超过50GB,文件数量最多1000个。 预训练文本 jsonl jsonl格式:text表示预训练所使用的文本数据,具体格式示例如下:
2024年11月发布的版本,支持32K序列长度推理,支持8个推理单元部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古专业大模型支持的具体操作: 模型 预训练
击进入所需空间。 在左侧导航栏中选择“空间资产 > 数据”。 单击数据资产(状态为“未发布到Gallery”)操作列的“发布到Gallery”,对数据资产进行发布。 在“发布到AI Gallery”页面填写AI Gallery资产名称与描述,选择可订阅区域约束与可看范围,单击“确定”,发布数据资产至AI
述会影响插件的选用。 填写“插件URL”(步骤1:获取文本翻译服务Token与调用地址中获取的文本翻译API调用地址),选择请求方式为“POST”。权限校验选择“用户级鉴权 > Header”,填写目标凭证名称为X-Auth-Token、源凭证名称为X-Auth-Token,请求
云容器引擎-成长地图 | 华为云 盘古大模型 盘古大模型服务(PanguLargeModels)致力于深耕行业,打造多领域行业大模型和能力集。盘古大模型能力通过ModelArts Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。
对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。 开发阶
训练NLP大模型 NLP大模型训练流程与选择建议 创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型
训练CV大模型 CV大模型训练流程与选择建议 创建CV大模型训练任务 查看CV大模型训练状态与指标 发布训练后的CV大模型 管理CV大模型训练任务 CV大模型训练常见报错与解决方案 父主题: 开发盘古CV大模型