检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
排队的专属资源池。 OBS 2.0支持 公共资源池 公共资源池提供公共的大规模计算集群,根据用户作业参数分配使用,资源按作业隔离。按资源规格、使用时长及实例数计费,不区分任务(训练作业、部署、开发)。公共资源池是ModelArts默认提供,不需另行创建或配置,您可以直接在AI开发过程中,直接选择公共资源池进行使用。
on)、内存(memory)和数据加载(dataloader)五个维度,根据训练作业卡数、训练实际性能问题有不同的呈现,并非所有训练任务都有上述五个维度的分析。 图10 html报告总览-性能分析五维度 computation 计算维度通常包含如下几类问题 降频:对应html中的'AI
训练输出设置 断点续训练建议和训练容错检查(即自动重启)功能同时使用。在创建训练作业页面,开启“自动重启”开关。训练环境预检测失败、或者训练容器硬件检测故障、或者训练作业失败时会自动重新下发并运行训练作业。 PyTorch版reload ckpt PyTorch模型保存有两种方式。
默认无限制,支持设置1~60000。 分钟 训练作业GPU规格训练时长(单张Pnt1单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 训练作业CPU规格训练时长(单核单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 可视化作业使用时长 默认无限制,支持设置1~60000。
迁移环境准备 迁移环境准备有以下两种方式: 表1 方式说明 序号 名称 说明 方式一 ModelArts Notebook 该环境为在线调试环境,主要面向演示、体验和快速原型调试场景。 优点:可快速、低成本地搭建环境,使用标准化容器镜像,官方Notebook示例可直接运行。 缺点:由于是
规范化模块中的优化主要包括自动运算符inline、自动循环融合和公共子表达式优化等。 自动调度: 自动调度模块基于polyhedral技术,主要包括自动向量化、自动切分、thread/block映射、依赖分析和数据搬移等。 后端优化: 后端优化模块的优化主要包括TensorCo
或者也可以从“数据准备 >数据标注”页面进入,单击“创建标注作业”进入创建标注作业页面。 在弹出的“创建标注作业”页面中,填写相关参数,然后单击“确定”,完成任务创建。 “名称”:设置此任务的名称。 “标注场景”:选择标注作业的任务类型。 “标签集”:展示当前数据集已有的标签及标签属性。
ModelArts的API或SDK支持模型下载到本地吗? ModelArts的API和SDK不支持模型下载到本地,但训练作业输出的模型是存放在对象存储服务(OBS)里面的,您可以通过OBS的API或SDK下载存储在OBS中的文件,具体请参见从OBS下载文件。 父主题: API/SDK
架创建训练作业。 训练作业进阶功能 ModelArts Standard还支持以下训练进阶功能,例如: 增量训练 分布式训练 训练加速 训练高可靠性 查看训练结果和日志 查看训练作业详情 训练作业运行中或运行结束后,可以在训练作业详情页面查看训练作业的参数设置,训练作业事件等。 查看训练作业日志
数据集版本不合格 出现此问题时,表示数据集版本发布成功,但是不满足自动学习训练作业要求,因此出现数据集版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。
如果启动脚本选择了不属于本工程的代码,则无法启动训练,错误信息如下图所示。建议将启动脚本添加至本工程,或者是打开启动脚本所在工程后,再启动训练作业。 图1 错误信息 父主题: PyCharm Toolkit使用
训练失败。 单击“提交”,确认训练作业的参数信息,确认无误后单击“确定”。 页面自动返回“训练作业”列表页,当训练作业状态变为“已完成”时,即完成了模型训练过程。 本案例的训练作业预计运行十分钟。 单击训练作业名称,进入作业详情界面查看训练作业日志信息,观察日志是否有明显的Err
RA、QLoRA,本文档主要支持全参数(Full)和LoRA。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 全参训练(Full):这种策略主要对整个模型进行微调。这意味
接经VPC对等连接发送到实例处理,访问速度更快。 由于请求不经过推理平台,所以会丢失以下功能: 认证鉴权 流量按配置分发 负载均衡 告警、监控和统计 图1 VPC直连的高速访问通道示意图 约束限制 调用API访问在线服务时,对预测请求体大小和预测时间有限制: 请求体的大小不超过12MB,超过后请求会被拦截。
训练阶段下有不同的训练策略,分为全参数训练、部分参数训练、LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。
如何使用API接口获取订阅算法的订阅id和版本id? 调用API接口使用“我的订阅”方式创建训练作业时,请求参数需要填写算法的订阅id(algorithm.subscription_id)和版本id(algorithm.item_version_id)。可调用如下接口获取相关信息,如下以北京四为例:
使用PyCharm提交训练作业 操作指导 12:29 使用PyCharm提交训练作业 为什么需要云上AI开发 视频介绍 06:30 为什么需要云上AI开发 云上AI开发-调试代码 操作指导 23:43 云上AI开发-Notebook调试代码 云上AI开发-运行训练作业 操作指导 16:08
updateNotebookApp 训练作业支持审计的关键操作列表 表3 训练作业支持审计的关键操作列表 操作名称 资源类型 事件名称 创建训练作业 ModelArtsTrainJob createModelArtsTrainJob 创建训练作业版本 ModelArtsTrainJob
单击“提交”,在“信息确认”页面,确认训练作业的参数信息,确认无误后单击“确定”。 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。 训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如下所示。
通过torch.distributed.run命令启动 创建训练作业 方式一:使用PyTorch预置框架功能,通过mp.spawn命令启动训练作业。 创建训练作业的关键参数如表1所示。 表1 创建训练作业(预置框架) 参数名称 说明 创建方式 选择“自定义算法”。 启动方式 选择“