检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自动续费可以减少手动续费的管理成本,避免因忘记手动续费而导致ModelArts中专属资源池不能使用。自动续费的规则如下所述: 以专属资源池的到期日计算第一次自动续费日期和计费周期。 专属资源池自动续费周期以您选择的续费时长为准。例如,您选择了3个月,专属资源池即在每次到期前自动续费3个月。 在专属
Transformers)模型是一种将Transformer架构引入扩散模型的新方法。传统的扩散模型通常使用U-Net架构,而DiT模型则用Transformer替代了U-Net,处理图像生成和去噪等任务。核心思想是通过Transformer的自注意力机制来捕捉序列中的依赖关系,
选择AI应用遵循的许可证。 计算规格选择 是 按需选择计算规格。单击“选择”,在弹窗中选择资源规格并设置运行时长控制,单击“确定”。 在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配置信息”区域会显示计算规格的详细数据,AI G
此处的作业资源利用率只涉及GPU和NPU资源。作业worker-0实例的GPU/NPU平均利用率计算方法:将作业worker-0实例的各个GPU/NPU加速卡每个时间点的利用率汇总取平均值。 如何提高训练作业资源利用率 适当增大batch_size:较大的batch_size可以让GPU/NPU计算单元获
选择AI应用遵循的许可证。 计算规格选择 是 按需选择计算规格。单击“选择”,在弹窗中选择资源规格并设置运行时长控制,单击“确定”。 在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配置信息”区域会显示计算规格的详细数据,AI G
在开始AI开发之前,必须明确要分析什么?要解决什么问题?商业目的是什么?基于商业的理解,整理AI开发框架和思路。例如,图像分类、物体检测等等。不同的项目对数据的要求,使用的AI开发手段也是不一样的。 准备数据 数据准备主要是指收集和预处理数据的过程。 按照确定的分析目的,有目的性的收集、整合相关数据,数据准
thms 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 metadata 否 AlgorithmMetadata object
将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。 将两份梯度数据进行相似度对比。在有标杆问题中,可以确认训练过程中精度问题出现的Step,以及抓取反向过程中的问题。 使用步骤如下:
而且,由于实现过程差异,不同硬件对于同样的计算过程,数值计算结果通常会有差异,比如GPU和CPU之间,GPU各版本之间,数值计算结果都有一定差异,在特定的容限范围内,不会影响模型的最终收敛。所以,计算的数值差异是很常规的现象,并非错误。 为了更好地了解这种计算差异,并且能够正确区分正常计算差异和引起模型精度问
包年/包月的资源池,不能进行跨region使用。 适用计费项 计算资源支持包年/包月。 表1 适用计费项 计费项 说明 计算资源 Standard专属资源池 弹性集群Lite Cluster资源池 弹性节点Server资源池 包括vCPU、GPU和NPU。 ModelArts提供了包年/包月的A
按需计费的资源池不支持跨region使用。 适用计费项 计算资源支持按需计费。 表1 适用计费项 计费项 说明 计算资源 公共资源池 包括vCPU、GPU和NPU。 AI专属资源池中的Standard资源池 ModelArts支持购买两种按需计费的资源池,包括公共资源池和专属资源池。 假设您计划购买按需
否 mode 确定性计算模式。可配置True或False。参数示例:mode=True。默认值:False。 即使在相同的硬件和输入下,API多次执行的结果也可能不同,开启确定性计算是为了保证在相同的硬件和输入下,API多次执行的结果相同。 确定性计算会导致API执行性能降低
Gallery中,支持订阅官方发布或者他人分享的模型,订阅后的模型,可推送至ModelArts模型管理中,进行统一管理。 订阅模型与云服务订阅模型的区别: 在管理控制台,模型管理所在位置不同。订阅模型统一管理在“模型管理>订阅模型”页面中,而云服务订阅模型管理在“模型管理>云服务订阅模型”页面中。
BS桶的操作权限。 本地上传 文件型和表格型数据均支持从本地上传。从本地上传的数据存储在OBS目录中,请先提前创建OBS桶。 从本地上传的数据单次最多支持100个文件同时上传,总大小不超过5GB。 不同类型的数据集,导入操作界面的示意图存在区别,请参考界面信息了解当前类型数据集的
更多裸金属服务器的介绍请见裸金属服务器 BMS。 xPU xPU泛指GPU和NPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练和推理。 NPU,即神经网络处理器,是专门为加速神经网络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。 密钥对 弹性裸金属支持SSH密
算子的执行,算子下发和执行异步发生,性能瓶颈在此过程中体现。在PyTorch的动态图机制下,算子被CPU逐个下发到NPU上执行。一方面,理想情况下CPU侧算子下发会明显比NPU侧算子执行更快,此时性能瓶颈主要集中在NPU侧;另一方面,理想情况下NPU侧算子计算流水线一直执行,不会
自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理 指按某种策略由已知判断推出新判断的思维过程。人工智
本案例介绍了如何使用ModelArts Standard专属资源池提供的计算资源,结合SFS和OBS存储,在ModelArts Standard的训练环境中开展单机单卡、单机多卡、多机多卡分布式训练。 面向熟悉代码编写和调测的AI工程师,同时了解SFS和OBS云服务 从 0 制作自定义镜像并用于训练(Pytorch+CPU/GPU)
ModelArts服务的计费项由ModelArts计算资源费用和对象存储、云硬盘等基础资源费用组成。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 适用的功能模块 计算资源费用 计费因子:包括vCPU、GPU和NPU。 按需计费的资源,按购买规格和时长计费 包年/包月的资源,按购买规格和周期计费 按需计费
ed等自动化方式固定,先通过切换CPU侧计算初始化之后再切回device侧。在train.py中做如下图第215行代码修改。 重新训练Dump比对分析后续计算是否存在偏差。比对之后发现:Tensor.__mul__.2在forward计算阶段的第一个input存在偏差。 追溯代码