数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类加工算子,算子能力清单见表1。 表1 图片类加工算子能力清单 算子分类 算子名称 算子描述 数据提取
这个临时响应用来通知客户端,它的部分请求已经被服务器接收,且仍未被拒绝。 101 Switching Protocols 切换协议。只能切换到更高级的协议。 例如,切换到HTTPS的新版本协议。 200 OK 服务器已成功处理了请求。 201 Created 创建类的请求完全成功。 202 Accepted 已经接受请求,但未处理完成。
npm i @huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explorer中具体API页面的“代码示例
、英文医疗问答数据集(webMedQA)、中医问答数据集(Huatuo-26M)等开源数据集。 合成数据生成 :利用现有数据生成新的数据实例。例如,通过指令泛化、相似指令生成等手段扩充数据多样性。 ModelArts Studio平台已经集成数据合成任务,创建文本类数据集合成任务步骤如下:
数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。 表1 视频类加工算子能力清单
Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求 华为云盘古大模型推理SDK要求: Java SDK适用于JDK
盘古NLP大模型是业界首个超千亿参数的中文预训练大模型,结合了大数据预训练和多源知识,借助持续学习不断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意营销等多个典型场景中,提供强大的AI技术支持。 ModelArts
导入数据至盘古平台 数据集是一组用于处理和分析的相关数据样本。 用户将存储在OBS服务中的数据导入至ModelArts Studio大模型开发平台后,将生成“原始数据集”被平台统一管理,用于后续加工或发布操作。 创建导入任务 创建导入任务前,请先按照数据集格式要求提前准备数据。 平台支持使用O
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确、更有针对性的输出,从而提高模型在特定任务上的性能。 在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造 。如果提示词模板满足不了使用需求可再单独创建。
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
成。 根据样例生成相似问题_few-shot 该指令通过用户输入的多个问题样例,生成一个或多个与样例风格相匹配的新问题。 根据文本生成问题 根据用户输入的上下文,生一个问题。可用于文本生成QA对的合成编排 问题改写 改写问题,生成更复杂的问题,可用于指令泛化 生成回答 回答改写
查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。 父主题: 批量评估提示词效果
理解能力。这时,通过调整提示词通常可以有效引导模型生成合理的回答。 例如,对于一些常见的问答场景(如常见百科问题),由于这些领域的相关数据广泛存在,模型通常能够较好地理解并生成准确回答。在这种情况下,通过调整提示词来引导模型的生成风格和细节,通常可以达到较好的效果。 业务逻辑的复杂性
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。 ROUGE-1 模型生成句子与实际
参数的值为获取到的Token,如图4。 图4 获取Token值 获取的文本翻译API调用地址。华北-北京四区域的调用地址的格式如下: https://nlp-ext.cn-north-4.myhuaweicloud.com/v1/{project_id}/machine-tran
据集,该数据集当前包括海洋气象数据。 海洋气象数据通常来源于气象再分析。气象再分析是通过现代气象模型和数据同化技术,重新处理历史观测数据,生成高质量的气象记录。这些数据既可以覆盖全球范围,也可以针对特定区域,旨在提供完整、一致且高精度的气象数据。 再分析数据为二进制格式,具体格式要求详见表1。
数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持文本类数据集的加工操作,分为数据提取、数据转换、数据过滤、数据打标四类,文本类加工算子能力清单见表1。 表1 文本类加工算子能力清单
整。 温度 用于控制生成结果的随机性。调高温度,会使得模型的输出更具多样性和创新性;降低温度,会使输出内容更加遵循指令要求,但同时也会减少模型输出的多样性。 问题配置 问题 该参数将在对话框中原样呈现给用户。如未配置此处,将由大模型根据输出参数描述,自动生成包含所有问题关键词的一个问题。
您即将访问非华为云网站,请注意账号财产安全