检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendFactory/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi模型3_training.sh文件 ChatGLMv3-6B
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendFactory/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B
nnel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16 父主题:
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendFactory/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi模型3_training.sh文件 ChatGLMv3-6B
为24小时,需要使用同一个Token鉴权时,可以缓存起来,避免频繁调用。 AK/SK认证:使用AK/SK对请求进行签名,在请求时将签名信息添加到消息头,从而通过身份认证。AK/SK签名认证方式仅支持消息体大小12M以内,12M以上的请求请使用Token认证。 APP认证:在请求头
--tokenizer-model : ${TOKENIZER_PATH} tokenizer路径。 --add-qkv-bias : 为qkv这样的键和值添加偏差。 CONVERT_HFtoMG:权重转换类型是否为HuggingFace权重转换为Megatron格式,True表示HuggingF
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
操作二:单击图例“cpuUsage”、“gpuMemUsage”、“gpuUtil”、“memUsage”“npuMemUsage”、“npuUtil”,可以添加或取消对应参数的使用情况图。 操作三:鼠标悬浮在图片上的时间节点,可查看对应时间节点的占用率情况。 图1 资源占用情况 表1 参数说明 参数
能和输出位置相同。 “名称”默认生成“data-xxxx”形式的数据集名称,该数据集将同步在ModelArts数据集列表中。 “描述”可以添加对于该数据集的相关描述。 图2 下载数据集(至ModelArts) 单击“确定”,跳转至“我的数据 > 我的下载”页面。 下载的数据集在AI
--address:头节点IP+端口号,头节点创建成功后,会有打印。 环境变量每个节点都要设置。 更新环境变量需要重启Ray集群。 选择其中一个节点,添加指定分布式后端参数【--distributed-executor-backend=ray】,其他参数与正常启服务一致即可。具体参考本文单机
r}为容器挂载路径 ①是否为PPO强化训练; 是,demo.sh添加变量; export PYTORCH_NPU_ALLOC_CONF = expandable_segments:False 否,demo.sh添加变量,开启虚拟显存; export PYTORCH_NPU_ALL
--enable-prefix-caching:如果prompt的公共前缀较长或者多轮对话场景下推荐使用prefix-caching特性。在推理服务启动脚本中添加此参数表示使用,不添加表示不使用。 --quantization:推理量化参数。当使用量化功能,则在推理服务启动脚本中增加该参数,若未使用量化功能,则
r}为容器挂载路径 ①是否为PPO强化训练; 是,demo.sh添加变量; export PYTORCH_NPU_ALLOC_CONF = expandable_segments:False 否,demo.sh添加变量,开启虚拟显存; export PYTORCH_NPU_ALL
默认关闭,可通过勾选高级选项提供增强功能。 如“按标签导入”:系统将自动获取此数据集的标签,您可以单击“添加标签”添加相应的标签。此字段为可选字段,您也可以在导入数据集后,在标注数据操作时,添加或删除标签。 参数填写完成,单击“提交”,即可完成数据集的创建。 创建数据集(表格) 登录Mod
--save-dir:权重转换完成之后保存路径。 --tokenizer-model:tokenizer 路径。 --add-qkv-bias:为qkv这样的键和值添加偏差。 权重转换完成后,在/home/ma-user/ws/processed_for_ma_input/Qwen-14B/convert
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
自动分组,可以将XX图片分类,比如论文、宣传海报、确认为XX的图片、其他。用户可以根据分组结果,快速剔除掉不想要的,或者将某一类直接全选后添加标签。 目前只有“图像分类”、“物体检测”和“图像分割”类型的数据集支持自动分组功能。 启动自动分组任务 登录ModelArts管理控制台
--address:头节点IP+端口号,头节点创建成功后,会有打印。 环境变量每个节点都要设置。 更新环境变量需要重启Ray集群。 选择其中一个节点,添加指定分布式后端参数【--distributed-executor-backend=ray】,其他参数与正常启服务一致即可。具体参考本文单机
启动smoothQuant量化服务。 参考部署推理服务,使用量化后权重部署AWQ量化服务。 注:Step3 创建服务启动脚本启动脚本中,服务启动命令需添加如下命令。 -q smoothquant 或者 --quantization smoothquant --dtype=float16 父主题:
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化