检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过HBase插入数据,命令如下: put 'table2', '1', 'cf:cid', '1000' 开发思路 查询table1表的数据。 根据table1表数据的key值去table2表做查询。 把前两步相应的数据记录做相加操作。 把上一步骤的结果写到table2表。 运行前置操作 安全模式下Spark
flatMap(_.split(" ")).groupBy("value").count() //开始运行将运行计数打印到控制台的查询。 val query = wordCounts.writeStream .outputMode("complete")
secure=true 在样例工程对应的“*.java”文件下单击右键,在弹出菜单单击“Run '*.main()' ”,等待运行成功(默认样例为查询Hive表)。 JDBCExampleZk样例程序运行结果如下所示: ... principal is hivetest@HADOOP.COM
将被忽略。 如果未指定默认值,则新列的默认值将被视为null。 如果在该列上应用filter,则在排序期间不会考虑新增列,新增列可能会影响查询性能。 示例 ALTER TABLE carbon ADD COLUMNS (a1 INT, b1 STRING); ALTER TABLE
e.topic.enable = true”) 支持为已有主题增加分区 支持更新现有主题的配置 可以为分区级别和主题级别度量标准启用JMX查询 父主题: 使用Kafka
Encoders.STRING()).groupBy("value").count(); //开始运行将运行计数打印到控制台的查询。 StreamingQuery query = wordCounts.writeStream() .outputMode("complete")
--zookeeper 192.168.100.100:2181/kafka --delete-config retention.ms 执行以下命令,查询topic信息。 kafka-topics.sh --describe -topic <topic_name> --zookeeper <
据异步发送到各个shard的各个副本。整个过程数据异步发送,且数据会在一个节点临时存储,会导致网络、磁盘都会成为瓶颈,且写入成功后不一定能查询到最新一致性数据等问题。 父主题: ClickHouse宽表设计
通过HBase插入数据,命令如下: put 'table2', '1', 'cf:cid', '1000' 开发思路 查询table1表的数据。 根据table1表数据的key值去table2表做查询。 把前两步相应的数据记录做相加操作。 把上一步骤的结果写到table2表。 运行前置操作 安全模式下Spark
distribution。 SORT_SCOPE:指定表创建时的排序范围。如下为四种排序范围。 GLOBAL_SORT:它提高了查询性能,特别是点查询。TBLPROPERTIES('SORT_SCOPE'='GLOBAL_SORT') LOCAL_SORT:数据会本地排序(任务级别排序)。
wordCounts = words.groupBy("word").count() # 开始运行将running counts打印到控制台的查询 query = wordCounts.writeStream\ .outputMode("complete")\
wordCounts = words.groupBy("word").count() # 开始运行将running counts打印到控制台的查询 query = wordCounts.writeStream\ .outputMode("complete")\
权限信息等)缓存起来,后续访问时不需要再次访问Hive metastore,在Hive数据源的表数据变化不频繁的场景下,可以一定程度上提升查询的性能。 调整HetuEngine元数据缓存步骤 使用HetuEngine管理员用户登录FusionInsight Manager页面,选择“集群
的调度池中运行。 设置BroadCastHashJoin的超时时间。 BroadCastHashJoin有超时参数,一旦超过预设的时间,该查询任务直接失败,在多并发场景下,由于计算任务抢占资源,可能会导致BroadCastHashJoin的Spark任务无法执行,导致超时出现。因
HDFS目录配额不足导致写文件失败 执行balance失败报错“Source and target differ in block-size” 查询或者删除HDFS文件失败 非HDFS数据残留导致数据分布不均衡 HDFS客户端安装在数据节点导致数据分布不均衡 节点内DataNode磁盘使用率不均衡
DD语义下的DAG,最后将DAG作为Spark的任务提交到Spark集群上进行计算,并合理利用Spark分布式内存计算能力,提高了Hive查询效率。 父主题: Hive
增大计算实例中单个Worker的内存大小 增大单个计算实例配置中的“Worker容器资源配置”的“容器内存(MB)”和“JVM”的“-Xmx”的值。 控制单个查询在单个Worker的内存使用大小 在“自定义配置”中单击“增加”,添加2个同名参数“query.max-memory-per-node”,
Encoders.STRING()).groupBy("value").count(); //开始运行将运行计数打印到控制台的查询。 StreamingQuery query = wordCounts.writeStream() .outputMode("complete")
SparkScript:提交SparkScript脚本,批量执行Spark SQL语句。 Spark SQL:使用Spark提供的类似SQL的Spark SQL语句,实时查询和分析用户数据。 Hive:建立在Hadoop基础上的开源的数据仓库。MRS支持提交HiveScript脚本和直接执行Hive SQL语句。
MY_TABLE; UPSERT VALUES 插入/修改数据。 UPSERT INTO MY_TABLE VALUES(1,'abc'); SELECT 查询数据。 SELECT * FROM MY_TABLE; CREATE INDEX 创建全局索引。 CREATE INDEX MY_IDX ON