检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
限制。这种场景下,建议找到原始镜像重新构建环境进行保存。 解决方法 找到原始镜像重新构建环境。建议使用干净的基础镜像,最小化的安装运行依赖内容,并进行安装后的软件缓存清理,然后保存镜像。 父主题: 自定义镜像故障
ect/data”,(此路径后面标记为输入路径)。 安装VS Code插件并登录 本地打开VS Code软件,单击左侧导航栏的图标,将插件包拖入到扩展区空白处,即可自动安装。 待左侧导航出现图标,表示插件安装完成。 图1 安装VS Code插件 创建训练作业 单击左侧导航的图标,
h scripts/install.sh命令提前下载完整代码包和安装依赖包,然后使用保存镜像功能。后续训练作业使用新保存的镜像,无需每次启动训练作业时再次下载代码包以及安装依赖包,可节约训练作业启动时间。 图4 安装依赖包 图5 保存镜像 图6 填写保存镜像相关参数 父主题: 准备镜像
首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kuberne
首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kuberne
首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kuberne
裸金属服务器环境配置指南。 本文基于方式二的环境进行操作,请参考方式二中的环境开通和配置指导完成裸机和容器开发初始化配置。注意业务基础镜像选择Ascend+PyTorch镜像。 配置好的容器环境如下图所示: 图1 环境配置完成 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
方式来部署训练环境。可以在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。在构建镜像的过程中会下载完整的模型代码、执行环境,然后自动进行NPU适配,并将以上源码和环境打包至镜像中。 ECS需要连通公网,否则会导致安装下载源码、安装环境依赖
方式来部署训练环境。可以在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。在构建镜像的过程中会下载完整的模型代码、执行环境,然后自动进行NPU适配,并将以上源码和环境打包至镜像中。 ECS需要连通公网,否则会导致安装下载源码、安装环境依赖
使用PyCharm上传数据至Notebook 前提条件 本地已安装2019.2-2023.2之间(包含2019.2和2023.2)版本的PyCharm专业版。SSH远程开发功能只限PyCharm专业版。单击PyCharm工具下载地址下载并完成安装。 Step1 下载并安装PyCharm ToolKit 在PyCharm中选择“File
使用Grafana查看AOM中的监控指标 安装配置Grafana 配置Grafana数据源 配置仪表盘查看指标数据 父主题: ModelArts Standard资源监控
CUDA is not enabled” 原因分析 出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。
sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题: 准备工作
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
者方法 第三方pip源中的python包版本更新,导致在训练作业中安装的python包的版本可能也会发生变化。如训练作业之前无此问题,后面一直有此问题,则考虑是此原因。 处理方法 通过Notebook调试。 安装时指定版本。如:pip install xxx==1.x.x 第三方
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题: 主流开源大模型基于Lite
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
如果存在之前能跑通,什么都没修改,过了一阵跑不通的情况,先去排查跑通和跑不通的日志是否存在pip源更新了依赖包,如下图,安装之前跑通的老版本即可。 图1 PIP安装对比图 推荐您使用本地Pycharm远程连接Notebook调试。 如果上述情况都解决不了,请联系技术支持工程师。 建议与总结