检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
(0表示完整)。 occluded:必选字段,标注内容是否被遮挡(0表示未遮挡)。 difficult:必选字段,标注目标是否难以识别(0表示容易识别)。 confidence:可选字段,标注目标的置信度,取值范围0-1之间。 bndbox:必选字段,标注框的类型。热轧钢板表面缺
在使用通用图像分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计图像分类标签 首先使用的数据需要考虑好分类的标签类型,即希望识别出图片中的一种结果。例如对天气现象图片进行分类时,标签可以以“snow”(雪)、“rainy”(雨)等作为分类的类别。 数据集要求 文件名
VPC服务介绍【视频】 OBS 2.0支持文字识别套件 文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。传统方式开发文字识别应用需要7天,使用文字识别套件完成新版式票证结构化提取接口开发仅需3分钟。
用描述”。 图3 基本信息 工作流配置 选择“所属行业”和“选择工作流”。当前视觉套件提供“零售商品识别工作流”、“热轧钢板表面缺陷检测工作流”、“云状识别工作流”、“刹车盘识别工作流”等。 图4 工作流配置 资源配置 图5 资源配置 分别选择“数据处理资源”、“模型训练资源”、
视觉套件 行业套件介绍 新建应用 零售商品识别工作流 热轧钢板表面缺陷检测工作流 云状识别工作流 刹车盘识别工作流 无监督车牌检测工作流 第二相面积含量测定工作流 通用图像分类工作流 更新应用版本 查看应用详情 监控应用 管理设备 删除应用
在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别图像的类别,也可以直接调用对应的API和SDK识别。 部署服务 父主题: 通用图像分类工作流
应用开发套件 文字识别套件 自然语言处理套件 视觉套件 HiLens套件
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
API失败,可根据返回的错误码及错误信息解决问题,具体的错误码说明请见表1。 表1 API调用指导 行业套件 调用API方法 错误码 文字识别套件 OCR_API参考 OCR错误码 自然语言处理套件 NLP_API参考 NLP错误码 视觉套件 Image_API参考 Image错误码
果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前应用各个版
支持自主上传显微成像的,且包含基础相和第二相的图片数据,构建第二相面积含量测定模型,能快速准确反馈测定结果。 适用场景 钢铁制造。 优势 模型精度高,识别速度快;更新模型简便。 工作流流程 在“ModelArts Pro>视觉套件”控制台选择“我的工作流>第二相面积含量测定工作流”新建应用,
检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。 父主题:
版本”。 详细评估 “详细评估”下方显示各个标签下正确率,即对应标签下预测正确的样本数占该标签下样本总数比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续优化,请单击“上一步”,回到“模型训练”步骤,详细操作指导请见训练模型。
以在上方单击选择“评估范围”,单击“添加对比版本”。 详细评估 “详细评估”下方显示各个标签下的样品数量比例,单击各标签,右侧可查看该标签识别错误的图片。 后续操作 针对当前版本的模型,经过模型评估后,如果根据业务需求,模型还需继续优化,请单击“上一步”,回到“模型训练”步骤,详细操作指导请见训练模型。