检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AI Gallery的订阅算法实现花卉识别 本案例以“ResNet_v1_50”算法、花卉识别数据集为例,指导如何从AI Gallery下载数据集和订阅算法,然后使用算法创建训练模型,将所得的模型部署为在线服务。其他算法操作步骤类似,可参考“ResNet_v1_50”算法操作。
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。
资产识别与管理 资产识别 用户在AI Gallery中的资产包括用户发布的AI资产以及用户提供的一些个人信息。 AI资产包括但不限于文本、图形、数据、文章、照片、图像、插图、代码、AI算法、AI模型等。 用户的个人信息包括: 用户注册时提供的昵称、头像、邮箱。 用户参加实践时提供的姓名、手机号、邮箱。
Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常
Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常
觉判读。简单的说就是识别一张图中是否是某类/状态/场景,适合图中主体相对单一的场景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数
样例 镜像 对应功能 场景 说明 使用ModelArts Standard自定义算法实现手写数字识别 PyTorch 自定义算法 手写数字识别 使用用户自己的算法,训练得到手写数字识别模型,并部署后进行预测。 从0制作自定义镜像并用于训练(PyTorch+CPU/GPU) PyTorch
余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾过期药物等。人工识别效率低下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾
余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾过期药物等。人工识别效率低下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾
Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL推理。 资源规格要求
已购买资源包,但使用量超出资源包额度或资源包属性与桶属性不匹配,进而产生按需费用,同时账户中的余额不足以抵扣产生的按需费用。请参考如何查看ModelArts中正在收费的作业?识别产生按需计费的原因,并重新选择正确的资源包或保证账户中的余额充足。 未购买资源包,在按需计费模式下账户的余额不足。 欠费影响 包年/包月
Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL Finetune训练。
物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应在所有图片个数相加超过100张,如果某些图片的标签
NodeCondtition中。同时,节点故障指标默认会上报到AOM,您可在AOM配置告警通知。 当发生节点异常时,在故障初步分析阶段,您可先按表1识别是否为亚健康并自助进行处理,如果不是,则为故障,请联系客户经理发起维修流程(如果无客户经理可提交工单)。 表1 节点故障类型定义 NodeCondition
Standard资源池节点故障定位 节点故障定位 对于Standard资源池,ModelArts平台在识别到节点故障后,通过给K8S节点增加污点的方式(taint)将节点隔离避免新作业调度到该节点而受到影响,并且使本次作业不受污点影响。当前可识别的故障类型如下,可通过隔离码及对应检测方法定位故障。 表1 隔离码 隔离码
时发现,就会导致无法及时释放资源,从而造成极大的资源浪费。为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展示,同时能配置通知及时提醒用户作业卡死。 检测规则 卡死检测主要是通过监控作业进程的状态和资源利用率来判
准备预训练模型。下载需要使用的预训练模型。 人脸检测预训练模型,下载链接。 专家唇形同步鉴别器,下载链接 ,此链接是官方提供的预训练模型。训练Wav2Lip模型时需要使用专家唇形同步鉴别器,用户可以用自己的数据训练,也可以直接使用官方提供的预训练模型。 处理初始视频数据集。 将下载好的人脸检测预训练模型修改名字为s3fd
Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与
odelArts会自动识别导致作业失败的原因,在训练日志界面上给出提示。提示包括三部分:失败的可能原因、推荐的解决方案以及对应的日志(底色标红部分)。 图1 训练故障识别 ModelArts Standard会对部分常见训练错误给出分析建议,目前还不能识别所有错误,提供的失败可能