检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
获取对应模型的权重文件,获取链接参考支持的模型列表和权重文件。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 在Notebook中修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
通过ModelArts的Notebook,在JupyterLab中使用OBS上传下载数据。 建议配置。 开发环境监控功能 AOM aom:alarm:put 调用AOM的接口,获取Notebook相关的监控数据和事件,展示在ModelArts的Notebook中。 建议配置。 VPC接入
获取对应模型的权重文件,获取链接参考支持的模型列表和权重文件。 在创建的OBS桶下创建文件夹用以存放权重文件,例如在桶中创建文件夹。将下载的权重文件上传至OBS中,得到OBS下数据集结构。此处以qwen-14b举例。 obs://${bucket_name}/${folder-name}/ #OBS桶名称和文件目录可以自定义创建,此处仅为举例。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
在使用MaaS服务时,如果未配置或缺失相关权限,会出现授权相关提示,请您及时处理。如果未处理,会导致部分功能出现异常。 添加依赖服务授权 由于大模型即服务平台的数据存储、模型导入以及部署上线等功能依赖OBS、SW等服务,需获取依赖服务授权后才能正常使用相关功能。 如果您未配置依赖服务授权,MaaS控制
再将数据集迁移至SFS。 在本机机器上运行,通过obsutil工具将本地数据集传到OBS桶。 # 将本地数据传至OBS中 # ./obsutil cp ${数据集所在的本地文件夹路径} ${存放数据集的obs文件夹路径} -f -r # 例如 ./obsutil cp ./coco
节点资源标签。 图4 添加/编辑/删除资源标签 导出节点数据 支持导出Lite资源池的节点信息到Excel表格中,方便查阅。 勾选节点名称,在节点列表上方单击“导出 > 导出全部数据到XLSX”或者“导出 > 导出部分数据到XLSX”,在浏览器的下载记录中查看导出的Excel表格。
ver资源。 准备代码 准备AscendFactory训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、
Server运行的,需要购买并开通Server资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍如何进行SFT全参微调/lora微调、训练任务、性能查看。
自动学习 准备数据 模型训练 部署上线 模型发布
享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 父主题: 准备工作
本的软件包,请严格遵照版本配套关系使用本文档。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件
历史文档待下线 ModelArts与其他服务的关系 如何上传数据至OBS?
采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于信息熵上限近似模型的树搜索最优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参,从企业关系型(结构化)数据中,自动学
OBS SDK OBS服务提供的SDK,对OBS进行操作。由于ModelArts较多功能需使用OBS中存储的数据,用户可使用OBS SDK进行调用,使用OBS存储您的数据。 OBS提供了多种语言SDK供选择,开发者可根据使用习惯下载OBS SDK进行调用。使用OBS SDK前,需下载OBS
只支持预览大小不超过10MB、格式为文本类或图片类的文件。 支持编辑资产介绍。每个资产介绍可分为基础设置和使用描述。 基础设置部分包含了该资产所有重要的结构化元数据信息。选择填入的信息将会变成该模型资产的标签,并且自动同步在模型描述部分,保存到“README.md”文件里。 模型描述部分是一个可在线编
import moxing as mox 引入moxing framework的数据下载加速特性的相关说明 在使用基于ModelArts预置镜像的训练作业时,可以引入moxing framework的数据下载加速特性。加速特性适用场景为:文件数在100w~1000w的场景、单个大文件及文件大小大于20GB的场景。