检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本方案目前仅适用于部分企业客户。 本文档适配昇腾云ModelArts 6.3.911版本,请参考软件配套版本获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.3版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。
对于资源池新增加的节点,可能会与资源池原有节点驱动不一致,为了保持驱动一致,目标版本可选择当前驱动版本,升级完成后所有节点驱动会升级为统一版本。 升级方式:可选择安全升级或强制升级。 安全升级:待节点上没有作业时再升级,升级周期可能比较长。 强制升级:忽略运行中作业,直接升级,可能会导致运行中作业失败。
特定子项目中资源,使得资源的权限控制更加精确。 同样在我的凭证下,您可以查看项目ID。 图1 项目隔离模型 企业项目 企业项目是项目的升级版,针对企业不同项目间资源的分组和管理,是逻辑隔离。企业项目中可以包含多个区域的资源,且项目中的资源可以迁入迁出。 关于企业项目ID的获取及企
Snt9b单卡规格,配搭ARM处理器,适合深度学习场景下的模型训练和调测 ModelArts提供了面向推理迁移工作的预置镜像,其中包含了最新商用版驱动、昇腾软件开发库,迁移工具链等。预置镜像可以做到即开即用,用户也可以基于预置镜像构建自定义环境内容。 ModelArts支持的昇腾迁移预置镜像如下:
Snt9B开展Hunyuan-DiT使用diffusers框架的推理过程。 约束限制 本方案目前仅适用于企业客户。 本文档适配昇腾云ModelArts 6.3.909版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”
页面,开启“自动重启”开关。训练环境预检测失败、或者训练容器硬件检测故障、或者训练作业失败时会自动重新下发并运行训练作业。 PyTorch版reload ckpt PyTorch模型保存有两种方式。 仅保存模型参数 state_dict = model.state_dict() torch
然后在超参或者环境变量中设置checkpoint和数据的挂载路径。 图3 在超参或者环境变量中设置checkpoint和数据的挂载路径 训练存储加速的代码样例(PyTorch版reload ckpt) PyTorch模型保存有两种方式。 仅保存模型参数 state_dict = model.state_dict()
创建内网域名:保持默认值。 确认规格无误后,单击“立即购买”后提交任务,界面自动跳转至终端节点列表页面。 创建DNS内网域名 新创建的在线服务对接的是专享版APIG,需要使用ModelArts推理的独立公网域名,即infer-modelarts-<regionId>.modelarts-infer
本文档适配昇腾云ModelArts 6.3.910版本,请参考软件配套版本获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 资源规格推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9B资源。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 支持FP16和BF16数据类型推理。
目录时,系统在训练作业启动前,自动将数据存储位置中的Checkpoint文件下载到训练容器的本地目录。 图1 训练输出设置 PyTorch版reload ckpt PyTorch模型保存有两种方式。 仅保存模型参数 state_dict = model.state_dict() torch
是否使用chatglm4-9b、falcon-11b模型。 是,更新配置或命令。 chatglm4-9b,更新transformers为4.41.2版本。 pip install transformers==4.41.2 falcon-11b,参考falcon-11B模型替换文件。 否,忽略此步骤,执行下一步。
本文档适配昇腾云ModelArts 6.3.911版本,请参考软件配套版本获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 资源规格推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9B资源。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.3版本。 支持FP16和BF16数据类型推理。
AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 模型软件包结构说明
Error: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0.8.14 父主题:
Error: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0.8.14 父主题:
No module named 'multipart'"报错: 截图如下: 解决措施:可更新python-multipart为0.0.12版本,具体步骤如下: 启动训练任务前更新python-multipart版本: pip install python-multipart==0
训练和基于ai-toolkit的Lora训练。 约束限制 本方案目前仅适用于企业客户。 本文档适配昇腾云ModelArts 6.3.911版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”
行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1
行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1
行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/nerdctl/releases/download/v1.7.6/nerdctl-1