检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4
镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址
镜像适配的Cann版本是cann_8.0.rc3。 Lite Server驱动版本要求23.0.6 PyTorch版本:2.1.0 确保容器可以访问公网。 文档更新内容 6.3.911版本相对于6.3.910版本新增如下内容: 文档中新增在数据预处理时,支持LLama-Factory格式的模板:
统安装错误。需要重新纳管机器,重新安装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4
28。版本使用的容器引擎为Containerd。 镜像适配的Cann版本是cann_8.0.rc3,驱动版本是23.0.6。 确保集群可以访问公网。 文档更新内容 6.3.911版本相对于6.3.910版本新增如下内容: 文档中新增在数据预处理时,支持LLama-Factory格式的模板:
"value": "工具参数" }, { "from": "observation", "value": "工具结果" },
统安装错误。需要重新纳管机器,重新安装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github
镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址
镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.3.1 Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址
镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址
按需计费资源生命周期 欠费预警 系统会在每个计费周期后的一段时间对按需计费资源进行扣费。当您的账户被扣为负值时,系统将通过邮件、短信和站内信的方式通知到华为云账号的创建者。 欠费后影响 当您的账号因按需资源自动扣费导致欠费后,账号将变成欠费状态。欠费后,按需资源不会立即停止服务,资源
"value": "工具参数" }, { "from": "observation", "value": "工具结果" },
"value": "工具参数" }, { "from": "observation", "value": "工具结果" },
heckpoint文件下载到训练容器的本地目录。 图1 训练输出设置 PyTorch版reload ckpt PyTorch模型保存有两种方式。 仅保存模型参数 state_dict = model.state_dict() torch.save(state_dict, path)
"value": "工具参数" }, { "from": "observation", "value": "工具结果" },
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4
cifar10数据集 在Notebook中,无法直接使用默认版本的torchvision获取数据集,因此示例代码中提供了三种训练数据加载方式。 cifar-10数据集下载链接,单击“CIFAR-10 python version”。 尝试基于torchvision获取cifar10数据集。
Lite提供了Python、C++以及JAVA三种应用开发接口。此处以Python接口为例,介绍如何使用MindSpore Lite Python API构建并推理Stable Diffusion模型,更多信息请参考MindSpore Lite应用开发。 以官方onnx pipeline代码为例,其提供的onnx