模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.909中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。
使用转换工具配置config参数,具体如下所示,其中“subgraph tuning”表示子图调优,“operator tuning”表示算子调优。
模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.911中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。
模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.912中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。
推荐先进行子图调优,再进行算子调优,因为先进行子图调优会生成图的切分方式,子图调优后算子已经被切分成最终的shape了,再进行算子调优时,会基于这个最终shape去做算子调优。如果优先算子调优,这时调优的算子shape不是最终切分后的算子shape,不符合实际使用场景。
MindStudio-Insight提供时间线视图、内存、算子耗时、通信瓶颈分析等功能,借助于数据库支持超大性能数据处理,可以支持20GB的集群性能文件分析,并且能够支持大模型场景下的性能调优,相比于Chrometrace、tensorboard等工具提供了更优的功能和性能。
它可以抓取模型中API输入的数值范围,根据范围随机生成输入,用相同的输入分别在NPU(GPU)和CPU上执行算子,比较输出差异。预检最大的好处是,它能根据算子(API)的精度标准来比较输出结果并判定其是否有精度问题。
工具将训练耗时拆分为计算、通信、调度三大维度,并针对计算和通信分别进行算子级别的比对;将训练占用的总内存,拆分成算子级别的内存占用进行比对。
层算子信息、底层NPU算子信息、以及算子内存占用信息等。
Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
unzip AscendCloud-*.zip unzip AscendCloud-LLM-*.zip Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务如产生mc2融合算子错误,可参考mc2融合算子报错 上传tokenizers文件到工作目录中的/mnt
Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。
unzip AscendCloud-*.zip unzip AscendCloud-LLM-*.zip Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务如产生mc2融合算子错误,可参考mc2融合算子报错 上传tokenizers文件到工作目录中的/mnt
- 自定义算子 是否有自定义算子,CPU还是CUDA,复杂程度。 例如:有5个CUDA自定义算子。1个高复杂度算子,基于C++开发2000行代码。4个中等复杂度算子,基于C++开发,平均每个自定义算子约500行代码。 - 动态shape 是否需要支持动态shape。
- 自定义算子 是否有自定义算子,CPU还是CUDA,复杂程度。 例如:有5个CUDA自定义算子。1个高复杂度算子,基于C++开发2000行代码。4个中等复杂度算子,基于C++开发,平均每个自定义算子约500行代码。 - 动态shape 是否需要支持动态shape。
图1 Ascend-vLLM架构图 算子:使用CANN基础算子和高性能融合算子,同时支持用户自定义算子,持续迭代优化,提高推理效率。 模型:结构实现和社区一致,Huggingface模型开箱即用,同时可以快速适配新模型。
您即将访问非华为云网站,请注意账号财产安全