检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 训练作业需要的数据集OBS URL。如:“/usr/data/”。 不可与data_source或者dataset_id/dataset_version_id同时出现,但必须有其一。 dataset_id 否 String 训练作业的数据集ID。应与dataset_
regpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,
com/repository/pypi/simple 图4 安装resnet依赖 准备数据集。 本样例使用的数据集为类别数为五类的花卉识别数据集,下载数据集并解压数据到工程目录。新建dataset文件夹,将解压后数据集保存在dataset文件夹下。 图5 准备数据集 配置PyCharm解释器和入参。 单击右上角“Current
com/mindspore/models.git -b v1.5.0 图2 下载后的模型包文件 下载花卉识别数据集。 本样例使用的数据集为类别数为五类的花卉识别数据集。 在Terminal里执行如下命令下载并解压数据集,将数据集保存在“./models/dataset/flower_photos”文件夹。 cd
表7 spec字段数据结构说明 参数 参数类型 说明 engine String 部署引擎,当前仅支持CCE。 params Object 部署参数,当前仅支持Docker,如表8所示。 表8 Docker部署参数数据结构说明 参数 参数类型 说明 namespace String SWR组织名称,全局唯一。
ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理
(可选)配置镜像预热 Lite Cluster资源池支持镜像预热功能,镜像预热可实现将镜像提前在资源池节点上拉取好,在推理及大规模分布式训练时有效缩短镜像拉取时间。本文将介绍如何配置镜像预热功能。 操作步骤 在ModelArts控制台左侧导航栏中找到“资源管理 > AI专属资源池
镜像过大,卸载原来的包重新打包镜像,最终镜像会变小吗? 不会,反而会变大。因为Docker镜像的层原因,当前的镜像是基于原来的镜像制作,而原来的镜像层数是无法改变的,层不变的情况下,大小是不变的,卸载包或者删除数据集,会新增镜像层,镜像反而会变大,这和传统概念的存储不一样。 父主题: Standard镜像相关
检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64
步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 步骤二 修改训练Yaml配置文件
如果在购买资源池时,没配置自定义驱动,默认驱动不满足业务要求,可通过驱动升级功能将驱动升级到指定版本。驱动升级功能介绍可参考升级Lite Cluster资源池驱动。 父主题: Lite Cluster资源配置
mmlu_subject_mapping.json # mmlu数据集学科信息 │ ├── ceval_subject_mapping.json # ceval数据集学科信息 ├── evaluators │ ├── evaluator.py # 数据集数据预处理方法集 │ ├── chatglm
python-3.9.10 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址:
制作推理镜像构建的推理镜像名称。 ${node-path}:节点自定义目录,该目录下包含pod配置文件config.yaml。 ${model-path}:Step1 上传权重文件中上传的模型权重路径。 参考Step4 创建pod创建pod以用于后续进行模型量化 Step2 模型量化 可以在Huggin
“输入-输入路径” 本次训练中,输入数据的OBS路径。 “输入-参数名称” 算法代码中,输入路径指代的参数。 “输入-获取方式” 本次训练作业的输入采用的获取方式。 “输入-本地路径(训练参数值)” 训练启动后,ModelArts将OBS路径中的数据下载至后台容器,本地路径指Mode
W4A16量化 大模型推理中,模型权重数据类型(weight),推理计算时的数据类型(activation)和kvcache一般使用半精度浮点FP16或BF16。量化指将高比特的浮点转换为更低比特的数据类型的过程。例如int4、int8等。 模型量化分为weight-only量化
通过ModelArts的Notebook,在JupyterLab中使用OBS上传下载数据。 建议配置。 开发环境监控功能 AOM aom:alarm:put 调用AOM的接口,获取Notebook相关的监控数据和事件,展示在ModelArts的Notebook中。 建议配置。 VPC接入
threshold (25G)”,镜像创建失败。 原因分析 镜像保存本质是通过在资源集群节点上的agent中进行了docker commit,再配合一系列自动化操作来上传和更新管理数据等。每次Commit都会带来额外的一些开销,层数越多镜像越大,如果多次保存后就会有存储显示没那么大,但是镜
示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4
示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4