检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Token计算器 功能介绍 为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployments
功能总览 功能总览 全部 数据工程工具链 模型开发工具链 应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据流通和管理等功能
创建NLP大模型评测任务 创建NLP大模型评测任务前,请确保已完成创建NLP大模型评测数据集操作。 预训练的NLP大模型不支持评测。 创建NLP大模型自动评测任务 创建NLP大模型自动评测任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间
查询推理作业详情 功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业
停止计费 包周期服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
查询推理作业详情 功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业
模型开发 ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。
盘古预测大模型能力与规格 盘古预测大模型是面向结构化数据,通过任务理解、模型推荐、模型融合技术,构建通用的预测能力。 ModelArts Studio大模型开发平台为用户提供了多种规格的预测大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计
使用盘古NLP大模型创建Python编码助手应用 场景描述 该示例演示了如何使用盘古NLP大模型创建Python编码助手执行应用,示例将使用Agent开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用提供了强大的计算
空间管理 ModelArts Studio大模型开发平台为用户提供了灵活且高效的空间资产管理方式。平台支持用户根据不同的使用场景、项目类别或团队需求,自定义创建多个工作空间。每个工作空间都是完全独立的,确保了工作空间内的资产不受其他空间的影响,从而保障数据和资源的隔离性与安全性。用户可以根据需求灵活划分工作空间
什么是盘古大模型 盘古大模型服务致力于深耕行业,打造多领域行业大模型和能力集。ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发平台及大模型应用开发平台,盘古NLP大模型、多模态大模型、CV大模型、预测大模型、
开发盘古大模型Agent应用 Agent开发平台介绍 编排与调用应用 编排与调用工作流 创建与管理插件 创建与管理知识库 Agent开发常见报错与解决方案
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API
查看提示词评估结果 评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为
编排工作流 Agent平台支持对工作流编排多个节点,以实现复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容直接输出结果