检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Standard模型训练 在ModelArts训练得到的模型欠拟合怎么办? 在ModelArts中训练好后的模型如何获取? 在ModelArts上如何获得RANK_TABLE_FILE用于分布式训练? 在ModelArts上训练模型如何配置输入输出数据? 在ModelArts上如何提升训练效率并减少与
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM
准备环境 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b
准备环境 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b
准备环境 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Lite k8s Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM
推理精度测试 本章节介绍如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值
Standard Notebook ModelArts的Notebook是否支持Keras引擎? 如何在ModelArts的Notebook中上传下载OBS文件? ModelArts的Notebook实例upload后,数据会上传到哪里? 在ModelArts中如何将Notebook
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表
推理业务迁移评估表 通用的推理业务及LLM推理可提供下表进行业务迁移评估: 收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed