检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
删除API 功能介绍 删除指定的API,只有对API所属服务有删除权限的用户才可以删除API。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v1/{
查询API 功能介绍 查询指定API详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/app-auth/{service_id
更新API授权 功能介绍 更新API的授权关系。API的认证方式必须为APP认证,APP的创建用户必须是API所属服务的创建者,且请求用户对API所属服务必须有更新权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK
通过APP认证的方式访问在线服务 部署在线服务支持开启APP认证,即ModelArts会为服务注册一个支持APP认证的接口,为此接口配置APP授权后,用户可以使用授权应用的AppKey+AppSecret或AppCode调用该接口。 针对在线服务的APP认证,具体操作流程如下。 开启支持
获取API授权关系列表 功能介绍 获取指定的API与APP授权关系列表,API的认证方式必须是APP认证,管理员可以获取所有API的授权信息,普通用户只能获取自己有访问权限的服务下的API的授权信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer
使用AppCode认证鉴权方式进行在线预测 场景描述 APPcode认证是一种简易的API调用认证方式,通过在HTTP请求头中添加参数X-Apig-AppCode来实现身份认证,无需复杂的签名过程,适合于客户端环境安全可控的场景,如内网系统之间的API调用。在ModelArts中,
计费样例 计费场景一 某用户于2023/03/18 15:30:00使用一个按需计费的公共资源池进行训练,规格配置如下: 规格:CPU: 8 核 32GB (modelarts.vm.cpu.8ud) 计算节点个数:1个 用了一段时间后,于2023/03/20 10:30:00停止训练作业
服务预测失败,报错APIG.XXXX 请求在APIG(API网关)出现问题被拦截,报错APIG.XXXX。 常见报错: APIG.0101 预测地址错误 APIG.0201 请求体内容过大 APIG.0301 鉴权失败 APIG.1009 AppKey和AppSecret不匹配 查看更多的
推理精度测试 本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。 Step1 执行精度测试 精度测试需要数据集进行测试。推荐公共数据集mmlu和
日志提示“CUDNN_STATUS_NOT_SUPPORTED. ” 问题现象 在pytorch训练时,出现如下报错: RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you
推理精度测试 本章节介绍如何进行推理精度测试。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目录中
在线服务预测报错MR.0105 问题现象 部署为在线服务,服务处于运行中状态,预测时报错:{ "erno": "MR.0105", "msg": "Recognition failed","words_result": {}}。 图1 预测报错 原因分析 请在“在线服务”详情页面的日志页签中查看对应的报错日志
训练脚本参数说明 在AscendCloud-AIGC代码包的multimodal_algorithm目录下集成了多个多模态模型的适配脚本,用户可通过不同模型中的xxx_install.sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github
训练脚本存放目录说明 在AscendCloud-AIGC代码包的multimodal_algorithm目录下集成了多个多模态模型的适配脚本,用户可通过不同模型中的xxx_install.sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github
MindSpore Lite问题定位指南 在MindSpore Lite使用中遇到问题时,例如模型转换失败、训练后量化转换失败、模型推理失败、模型推理精度不理想、模型推理性能不理想、使用Visual Studio报错、使用Xcode构建APP报错等,您可以先查看日志信息进行定位分析
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中
发布本地AI应用到AI Gallery 场景描述 AI Gallery自定义AI应用能力为您提供了一个自由灵活的AI应用创建方式,您可以基于AI Gallery上提供的基础能力,发挥您的创造力,通过自定义代码的形式,自由地构建出您需要的AI应用形态。 准备AI应用运行文件“app.py
Standard推理部署 如何将Keras的.h5格式的模型导入到ModelArts中? ModelArts导入模型时,如何编写模型配置文件中的安装包依赖参数? 在ModelArts中使用自定义镜像创建在线服务,如何修改端口? ModelArts平台是否支持多模型导入? 在ModelArts
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM