检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts上如何创建引用第三方依赖包的训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip
训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 无成功响应参数。 表2 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String
程会消耗较长时间。 处理方法 在创建训练作业时,数据可以保存到OBS上。不建议使用TensorFlow、MXNet、PyTorch的OBS接口直接从OBS上读取数据。 如果文件较小,可以将OBS上的数据保存成“.tar”包。训练开始时从OBS上下载到“/cache”目录,解压以后使用。
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点,LabelingStep结构如下:
参数 是否必选 参数类型 描述 description 是 String 需要更改的训练作业的描述信息。 无成功响应参数 表3 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String
创建Workflow数据集版本发布节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的版本自动发布的功能。数据集版本发布节点主要用于将已存在的数据集或者标注任务进行版本发布,每个版本相当于数据的一个快照,可用于后续的数据溯源。主要应用场景如下: 对于数据标注这
集群模式,开箱即提供好Kubernetes集群,直接使用,方便高效。 节点模式,客户可采用开源或自研框架,自行构建集群,更强的掌控力和灵活性。 零改造迁移 提供业界通用的k8s接口使用资源,业务跨云迁移无压力。 SSH直达节点和容器,一致体验。
ibstat查看网卡非Active状态。 A050121 NPU 其他 npu dcmi接口检测到driver异常。 NPU驱动环境异常。 A050122 NPU 其他 npu dcmi device异常。 NPU设备异常,昇腾dcmi接口中返回设备存在重要或紧急告警。 A050123 NPU 链路 npu
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host ${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。
创建Workflow数据集导入节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的数据导入功能。数据集导入节点主要用于将指定路径下的数据导入到数据集或者标注任务中,主要应用场景如下: 适用于数据不断迭代的场景,可以将一些新增的原始数据或者已标注数据导入到标注任
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --t
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --
创建Workflow服务部署节点 功能介绍 通过对ModelArts服务管理能力的封装,实现Workflow新增服务和更新服务的能力。主要应用场景如下: 将模型部署为一个Web Service。 更新已有服务,支持灰度更新等能力。 属性总览 您可以使用ServiceStep来构建
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --
errorMessage:None reason:Service Unavailable 如果是client数太多,尤其对于5G以上文件,OBS接口不支持直接调用,需要分多个线程分段复制,目前OBS侧服务端超时时间是30S,可以通过如下设置减少进程数。 # 设置进程数 os.envir
Integer 当前返回的日志大小(单位:字节)。最大为5兆。 full_size Integer 完整的日志大小(单位:字节)。 表4 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String
were not found in your environment: flash_attn 根因:昇腾环境暂时不支持flash_attn接口 规避措施:修改dynamic_module_utils.py文件,将180-184行代码注释掉 vim /home/ma-user/an
Standard控制台的方式创建生产环境的训练作业,详细操作请参考本章节以下内容。 通过ModelArts提供的API接口创建生产环境的训练作业,详细操作请参见使用API创建训练作业。 前提条件 已经将用于训练作业的数据上传至OBS目录。 已经在OBS目录下创建了至少1个空的文件夹,用于存储训练输出的内容。
n_path") # 模型初始化之后位置添加。 debugger.monitor(model) ... # 结束训练之后,调用stop接口。 debugger.stop() (可选)梯度数据相似度比对。 from msprobe import * GradComparator