检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方式二:通过vLLM服务API接口启动服务 在llm_inference/ascend_vllm/目录下通过vLLM服务API接口启动服务,具体操作命令如下,API Server的命令相关参数说明如下,可以根据参数说明修改配置。 python -m vllm.entrypoints.api_server
SSE协议只支持部署在线服务。 只支持自定义镜像导入模型部署的在线服务。 调用API访问在线服务时,对预测请求体大小和预测时间有限制: 请求体的大小不超过12MB,超过后请求会被拦截。 因APIG(API网关)限制,平台每次请求预测的时间不超过40秒。 SSE在线服务调用 SSE协
负载均衡 告警、监控和统计 图1 VPC直连的高速访问通道示意图 约束限制 调用API访问在线服务时,对预测请求体大小和预测时间有限制: 请求体的大小不超过12MB,超过后请求会被拦截。 因APIG(API网关)限制,平台每次请求预测的时间不超过40秒。 准备工作 使用专属资源池部署在线服务,服务状态为“运行中”。
方式二:通过vLLM服务API接口启动服务 在llm_inference/ascend_vllm/目录下通过vLLM服务API接口启动服务,具体操作命令如下,API Server的命令相关参数说明如下,可以根据参数说明修改配置。 python -m vllm.entrypoints.api_server
负载均衡 告警、监控和统计 图1 VPC直连的高速访问通道示意图 约束限制 调用API访问在线服务时,对预测请求体大小和预测时间有限制: 请求体的大小不超过12MB,超过后请求会被拦截。 因APIG(API网关)限制,平台每次请求预测的时间不超过40秒。 准备工作 使用专属资源池部署在线服务,服务状态为“运行中”。
Issues'。训练时如果频繁进行算子编译会严重影响训练性能,可以增加两行python代码关闭算子编译。 亲和API:对应html中的'Affinity API Issues'。通过使能亲和API(NPU融合算子API如rms_norm,NPU亲和优化器如NPUFusedAdamw)可以减少算子下发数量,从而提升训练性能。
jpg', binary=True), np.uint8), cv2.IMREAD_COLOR) 将一个不支持OBS路径的API改造成支持OBS路径的API pandas中对h5的文件读写to_hdf和read_hdf既不支持OBS路径,也不支持输入一个文件对象,考虑以下代码会出现错误。
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
参数类型 描述 model 是 无 Str 通过OpenAI服务API接口启动服务时,推理请求必须填写此参数。取值必须和启动推理服务时的model ${model_path}参数保持一致。 通过vLLM服务API接口启动服务时,推理请求不涉及此参数。 prompt 是 - Str
推理部署使用场景 AI模型开发完成后,在ModelArts服务中可以将AI模型创建为模型,将模型快速部署为推理服务,您可以通过调用API的方式把AI推理能力集成到自己的IT平台,或者批量生成推理结果。 图1 推理简介 训练模型:可以在ModelArts服务中进行,也可以在您的本地
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
方式二:通过vLLM服务API接口启动服务 在llm_inference/ascend_vllm/目录下通过vLLM服务API接口启动服务,具体操作命令如下,API Server的命令相关参数说明如下,可以根据参数说明修改配置。 python -m vllm.entrypoints.api_server
部署在线服务使用的模型是从容器镜像中导入时,容器调用接口协议填写错误,会导致此错误信息。 出于安全考虑,ModelArts提供的推理请求都是https请求,从容器镜像中选择导入模型时,ModelArts允许使用的镜像提供https或http服务,但必须在“容器调用接口”中明确指定该镜像使用的是https或http服务。如下图所示:
as引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本
} } } } }] apis定义提供模型对外Restfull api数据定义,用于定义模型的输入、输出格式。 创建模型填写apis。在创建的模型部署服务成功后,进行预测时,会自动识别预测类型。 创建模型时不填写apis。在创建的模型部署服务成功后,进行预测,
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
rch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch
命令行程序的用户,obsutil是执行批量处理、自动化任务的好的选择。 如果您的业务环境需要通过API或SDK执行数据上传操作,或者您习惯于使用API和SDK,推荐选择OBS的API或SDK方法创建桶和上传对象。 上述说明仅罗列OBS常用的使用方式和工具,更多OBS工具说明,请参见《OBS工具指南》。
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应