检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
登录ModelArts控制台,左侧菜单选择“模型管理”; 单击“创建”,进入创建模型界面,元模型选择“从容器镜像中选择”,选择自定义镜像; 配置“容器调用接口”和端口号,端口号与模型配置文件中的端口保持一致; 设置完成后,单击“立即创建”,等待模型状态变为“正常”; 重新部署在线服务。 父主题:
dli:table:describeTable 在数据集中管理DLI数据 管理表格数据集 DWS dws:openAPICluster:list dws:openAPICluster:getDetail dws:cluster:list 在数据集中管理DWS数据 管理表格数据集 MRS
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
5055: 订阅已过期。 处理方法 在权限管理页面进行依赖服务的授权。完成委托授权请参考了解ModelArts权限配置。 检查是否有OBS权限或者接口操作权限。 订阅已过期,可以在AI Gallery确认可以续订后,重新订阅。 父主题: 模型管理
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
“策略内容”请参见ModelArts开发环境使用权限的自定义策略样例,ModelArts自定义策略中可以添加的授权项(Action)请参见《ModelArts API参考》>权限策略和授权项。 如果您需要对除ModelArts和OBS之外的其它服务授权,IAM支持服务的所有策略请参见权限策略。 在IAM控制台创建用户组并授权。
“策略内容”请参见ModelArts开发环境使用权限的自定义策略样例,ModelArts自定义策略中可以添加的授权项(Action)请参见《ModelArts API参考》>权限策略和授权项。 如果您需要对除ModelArts和OBS之外的其它服务授权,IAM支持服务的所有策略请参见权限策略。 在IAM控制台创建用户组并授权。
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档
ModelArts以10秒/次的频率调用自定义配置中提供的命令或http接口获取指标数据。 自定义配置中提供的命令或http接口返回的指标数据文本不能大于8KB。 命令方式采集自定义指标数据 用于创建自定义指标采集POD的YAML文件示例如下。 apiVersion: v1 kind: Pod metadata:
权限配置指南 》> 典型场景配置案例,查找授予OBS桶权限的指导。 获得OBS桶的读写权限后,您可以在Notebook中,使用moxing接口,访问对应的OBS桶,并读取数据。举例如下: import moxing as mox mox.file.copy_parallel('o
通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP Restful API的访问方式。 Triton是一个高性能推理服务框架,提供HTTP/gRPC等多种服务协议,支持TensorFlow、TensorRT、Py
--backend:服务类型,支持tgi、vllm、mindspore、openai、openai-chat等。本文档使用的推理接口是vllm,而llava多模态推理接口是openai-chat。 --host ${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。
创建训练作业选择自定义方式 当使用完全自定义镜像创建训练作业时,“启动命令”必须在“/home/ma-user”目录下执行,否则训练作业可能会运行异常。 在完全使用自定义镜像创建训练作业时,通过指定的“conda env”启动训练。由于训练作业运行时不是shell环境,因此无法直接使用“conda
自动重启 选择是否打开“自动重启”开关。 开关关闭(默认关闭):表示不启用自动重启。 开关打开:表示当由于环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。 打开开关后,可以设置“最大重启次数”和是否启用“无条件自动重启”。 重启次数的取值
为增加精度评测的稳定性及进一步确保训练精度,使用多个数据集【MMLU、CEVAL】评测,执行过程如下: 获取到训练权重后使用ascendfactory-cli、eval接口用mmlu、ceval数据集对训练后的结果进行评测 test-benchmark目录目录下执行命令 ascendfactory-cli eval
Container,SWR)是一种支持镜像全生命周期管理的服务, 提供简单易用、安全可靠的镜像管理功能,帮助您快速部署容器化服务。您可以通过界面、社区CLI和原生API上传、下载和管理容器镜像。 您制作的自定义镜像需要上传至SWR服务。ModelArts开发环境、训练和创建模型使用的自定义镜像需要从SWR服务管理列表获取。