检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
提示词写作实践 从基模型训练出行业大模型 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API的详细介绍,您将全面理解如何调用和集成盘古大模型的各类接口,确保在不同场景中灵活应用这些强大的模型能力,加速业务开发进程。 API文档 NLP大模型 科学计算大模型 Token计算器
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要
盘古推理SDK简介 推理SDK概述 盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(/chat/completions)
或本地环境中。平台支持多种部署模式,能够满足不同场景的需求。通过灵活的API接口,模型可以无缝集成到各类应用中。 模型调用:在模型部署后,用户可以通过模型调用功能快速访问模型的服务。平台提供了高效的API接口,确保用户能够方便地将模型嵌入到自己的应用中,实现智能对话、文本生成等功能。
间以原到期时间为准,需支付从进入保留期开始至续费时的费用。 账户欠费后,部分操作将受限,建议您尽快续费。具体受限操作如下: 按需方式的API接口不可调用。 无法开通服务。
无需鉴权:不使用鉴权时会存在安全风险。 用户级鉴权:用户级鉴权可以使用Header鉴权或Query鉴权的方式,需要提供密钥鉴权参数名和密钥来源参数名。 API Key:API Key鉴权可以使用Header鉴权或Query鉴权的方式,需要提供密钥鉴权参数名和密钥值。 请求头 插件服务的请求头。添加请求的
使用“能力调测”调用NLP大模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建NLP大模型部署任务。 NLP大模型支持文本对话能力,在输入框中输入问题,模型就会返回对应的答案内容。 图1 调测NLP大模型 表1 NLP大模型能力调测参数说明
您可以通过以下方式使用该功能: 在左侧导航栏选择“能力调测”,单击右下角“Token计算器”使用该功能。 使用API调用Token计算器,详见《API参考》“API > Token计算器”。 NLP大模型训练类型选择建议 平台针对NLP大模型提供了两种训练类型,包括预训练和微调,二者区别详见表3。
使用“能力调测”调用科学计算大模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建科学计算大模型部署任务。 科学计算大模型支持全球中期天气要素预测、全球中期降水预测、全球海洋要素、区域海洋要素、全球海洋生态、全球海
aS和SaaS类云服务内部的安全以及对租户定制配置进行安全有效的管理,包括但不限于虚拟网络、虚拟主机和访客虚拟机的操作系统,虚拟防火墙、API网关和高级安全服务,各项云服务,租户数据,以及身份账号和密钥管理等方面的安全配置。 《华为云安全白皮书》详细介绍华为云安全性的构建思路与措
使用数据工程构建NLP大模型数据集 NLP大模型支持接入的数据集类型 盘古NLP大模型仅支持接入文本类数据集,该数据集格式要求请参见文本类数据集格式要求。 构建NLP大模型所需数据量 使用数据工程构建盘古NLP大模型数据集进行模型训练时,所需数据量见表1。 表1 构建NLP大模型所需数据量
使用数据工程构建科学计算大模型数据集 科学计算大模型支持接入的数据集类型 盘古科学计算大模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 构建科学计算大模型训练数据要求 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求 模型类别
使用盘古加工算子构建单轮问答数据集 场景描述 此示例演示了如何使用加工算子轻松构建单轮问答数据集。数据集的加工算子是一种灵活的数据预处理工具,能够帮助您将原始数据转化为所需的格式。通过使用加工算子,您可以提取、转换、过滤原始数据,生成适合大模型训练的数据集。 准备工作 请提前准备
使用盘古预置NLP大模型进行文本对话 场景描述 此示例演示了如何使用盘古能力调测功能与盘古NLP大模型进行对话问答。您将学习如何通过调试模型超参数,实现智能化对话问答功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 >
数据工程介绍 数据工程简介 数据工程是ModelArts Studio大模型开发平台为用户提供的一站式数据处理与管理功能,旨在通过系统化的数据获取、加工、标注、评估和发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率,为大模型开发提供坚实的数据基础。
导入数据至盘古平台 数据集是一组用于处理和分析的相关数据样本。存储在OBS服务中的数据或本地数据导入ModelArts Studio大模型开发平台后,将以数据集的形式进行统一管理。 用户将数据导入至平台后,这些数据会生成一个“原始数据集”,用于对导入的数据进行集中管理和进一步操作。
发布预测类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 预测类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
发布其他类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 其他类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
数据集标注场景介绍 数据标注概念 数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。
数据工程常见报错与解决方案 数据工程常见报错及解决方案请详见表1。 表1 数据工程常见报错与解决方案 功能模块 常见报错 解决方案 数据获取 File format mismatch, require [{0}]. 请检查创建数据集时使用的数据,与平台要求的文件内容格式是否一致。