检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
能评估等,让AI项目管理者能很方便的查看流水线执行过程的质量与效率。 流程优化:围绕流水线每一次迭代,用户可以自定义输出相关的核心指标,并获取相应的问题数据与原因等,从而基于这些指标,快速决定下一轮迭代的执行优化。 Workflow介绍 Workflow(也称工作流,下文中均可使
system:系统提示词,用来为整个对话设定场景或提供指导原则。 tools:描述可用的外部工具或功能的信息,这些工具可能被模型用来执行某些任务或获取更多信息。 [ { "conversations": [ {
system:系统提示词,用来为整个对话设定场景或提供指导原则。 tools:描述可用的外部工具或功能的信息,这些工具可能被模型用来执行某些任务或获取更多信息。 [ { "conversations": [ {
进入Terminal界面 例如,通过Terminal在“TensorFlow-1.8”的环境中使用pip安装Shapely。 在代码输入栏输入以下命令,获取当前环境的kernel,并激活需要安装依赖的python环境。 cat /home/ma-user/README source /home
yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide 若查看启动作
yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide 若查看启动作
system:系统提示词,用来为整个对话设定场景或提供指导原则。 tools:描述可用的外部工具或功能的信息,这些工具可能被模型用来执行某些任务或获取更多信息。 [ { "conversations": [ {
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 email 否 String 标注团队成员邮箱。 high_score
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 final_annotation 否 Boolean
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workforce_task_id 是 String 团队标注任务ID。 表2 Query参数 参数 是否必选 参数类型
system:系统提示词,用来为整个对话设定场景或提供指导原则。 tools:描述可用的外部工具或功能的信息,这些工具可能被模型用来执行某些任务或获取更多信息。 [ { "conversations": [ {
yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide 若查看启动作
BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 步骤一:配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构
”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 安装Docker。 以Linux aarch64架构的操作系统为例,获取Docker安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL
system:系统提示词,用来为整个对话设定场景或提供指导原则。 tools:描述可用的外部工具或功能的信息,这些工具可能被模型用来执行某些任务或获取更多信息。 [ { "conversations": [ {
steps=[job_step], storages=[storage] ) Workflow不会自动获取训练输出的指标信息,要求用户自行在算法代码中获取指标信息并且按照指定的数据格式构造出metrics.json文件,自行上传到MetricsConfig中配置的OB
${your_container_id}:/xxx/xxx/pytorch.tar.gz . 将pytorch.tar.gz上传到OBS并设置公共读,并在构建时wget获取、解压、清理。 新镜像构建 基础镜像一般选用ubuntu 18.04的官方镜像,或者nvidia官方提供的带cuda驱动的镜像。相关镜像直接到dockerhub官网查找即可。
H中则直接选中数据集文件,USER_CONVERTED_CKPT_PATH则需选中存放已处理好数据集的目录文件夹。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置环境变量 单
lm_tools/llm_evaluation/benchmark_tools conda activate python-3.9.10 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets
csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets