检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
获取账号名和账号ID 在调用接口的时候,部分请求中需要填入账号名(domain name)和账号ID(domain_id),所以需要先在管理控制台上获取到账号ID。账号ID获取步骤如下: 登录管理控制台。 鼠标移动至用户名,在下拉列表中单击“我的凭证”。 在“API凭证”页面的查看“账号名”和“账号ID”。
获取项目ID 调用API获取项目ID 项目ID可以通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为“GET https://{Endpoint}/v3/projects”,其中{Endpoint}为IAM的终端节点,可以从地区和终端节点获取。 接口的认证鉴权请参见管理面API构造请求。
获取数据资产 功能介绍 获取数据资产。 URI GET /ges/v1.0/{project_id}/graphs/{graph_name}/schema/data-assets 表1 路径参数 参数 是否必选 类型 说明 project_id 是 String 项目ID。获取方法请参见获取项目ID。
project_id 是 String 项目ID。获取方法请参见获取项目ID。 graph_id 是 String 图ID。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 backup_id 是 String 备份ID。获取方法请参考查看某个图的备份列表。 X-Auth-Token
初始化参数获取 参数名 参数值说明 获取方式 备注 regionCode 当前区域,比如华北-北京四的区域为cn-north-4 您可以从地区和终端节点中查询服务的区域。 - projectId 创建图实例的项目ID 登录管理控制台后,在页面右上角单击用户名,然后在下拉列表中单击“我的凭证”,进入“我的凭证”页面。
请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取方法请参见获取Token接口,响应消息头中X-Subject-Token的值即为Token。 响应参数 状态码: 200 表4 响应Body参数
基本概念 点 图数据模型中的点代表实体。如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache
hip),点和关系是最重要的实体。 图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。
on:表示文件系统的挂载点。 网络 在网络页面,您可以根据节点和网卡名称浏览指定节点的网络资源实时消耗情况。其中包括:节点名称、网卡名称、网卡状态、接收丢包数、接收速率(KB/s)、发送速率(KB/s)和网络监控情况等。 图5 网络页 用户可单击指定节点名称所在行最右侧的“监控”按钮,进入网络监控概览
一般情况下,建议就近选择靠近您或者您的目标用户的区域,这样可以减少网络时延,提高访问速度。不过,在基础设施、BGP网络品质、资源的操作与配置等方面,中国大陆各个区域间区别不大,如果您或者您的目标用户在中国大陆,可以不用考虑不同区域造成的网络时延问题。 在除中国大陆以外的亚太地区有业务的用户,可
中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 Betweenness Centrality算法参数说明
聚类系数算法(Cluster Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。
企业IT应用 网络&IT基础设备规模庞大、结构复杂,帮助客户深入了解设备状态、设备之间的关系,实现全网络设备智能监控与管理。 该场景能帮助您实现以下功能。 合理规划网络 快速确定故障节点对网络的影响,并在最依赖的节点周围推荐备用路由,在新节点的规划时,精准规划网络位置。 分析故障根因
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景
Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别,城市热点事件\早晚高峰人群车辆迁徙发生时关键路段的模拟;适用于社交、金融风控、交通路网、城市规划等领域 参数说明
请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取方法请参见获取Token接口,响应消息头中X-Subject-Token的值即为Token。 表4 请求Body参数 参数 是否必选 参数类型
、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径。 适用场景 任意网络。 参数说明 表1 filtered_n_paths参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 起始点 String
String 项目ID。获取方法请参见获取项目ID。 graph_id 是 String 图ID。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取方法请参见获取Token接口
action_id=execute-gremlin-query 表1 路径参数 参数 是否必选 类型 说明 project_id 是 String 项目ID。获取方法请参见获取项目ID。 graph_name 是 String 图名称。 请求参数 表2 Body参数说明 参数 是否必选 类型 说明 command