检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加
面列举的原始工具MS Convertor、Benchmark和msprof。使用指导详见AIGC工具tailor使用指导。 模型转换工具 离线转换模型功能的工具MSLite Convertor,支持onnx、pth、tensorflowLite多种类型的模型转换,转换后的模型可直
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,
i_precision_compare_details_{timestamp}.csv文件的API详细达标情况。 详细工具的使用指导请参考离线预检和在线预检介绍。 父主题: Msprobe工具使用指导
然后单击“确定”。 当数据完成标注后,您还可以进入“已标注”页签,对已标注的数据进行修改。 基于音频修改 在标注作业详情页面,单击“已标注”页签,然后在音频列表中选中待修改的音频(选择一个或多个)。在右侧标签信息区域中对标签进行修改。 修改标签:在“选中文件标签”区域中,单击操
ython,在下拉列表中单击“Install”进行安装。 图8 安装云端Python插件 如果安装云端的Python插件不成功时,建议通过离线包的方式安装。具体操作请参见安装远端插件时不稳定,需尝试多次。 Step4 云上环境依赖库安装 在进入容器环境后,可以使用不同的虚拟环境,
vllm_ppl.py 里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size, 推理时传入的 prompts 数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数
vllm_ppl.py 里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size, 推理时传入的 prompts 数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数
m/vllm_ppl.py 里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size,推理时传入的prompts数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用ppl时必须为True tp_size,使用推理的卡数
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
vllm_ppl.py 里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size, 推理时传入的 prompts 数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数
vllm_ppl.py 里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size, 推理时传入的 prompts 数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数
m/vllm_ppl.py 里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size,推理时传入的prompts数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用ppl时必须为True tp_size,使用推理的卡数
vllm_ppl.py 里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size, 推理时传入的 prompts 数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数