检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf llama2-13b https://huggingface.co/meta-llama/Llama-2-13b-chat-hf llama2-70b https://huggingface
modelarts:network:get aom:metric:get aom:metric:list aom:alarm:list 实例的启动、停止、创建、删除、更新等依赖的权限。 建议配置。 仅在严格授权模式开启后,需要显式配置左侧权限。 动态挂载存储配置 ModelArts modelarts:no
"type": "modelarts/image_classification" } ] } 数据输出的data文件夹中存放的是修改、更新过的图片,对于数据处理过程中没有修改过的图片,在data文件夹中不会展示,图片的位置信息显示该图片在输入目录中。 output.manif
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 检查环境。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
GPU训练业务迁移至昇腾的通用指导 训练业务迁移到昇腾设备场景介绍 训练迁移快速入门案例 PyTorch迁移精度调优 PyTorch迁移性能调优 训练网络迁移总结 父主题: GPU业务迁移至昇腾训练推理
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface