检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。此外,若可预见实际场景会不断发生变化,建议您定期更新训练数据,对模型进行微调更新。 父主题: 大模型微调训练类问题
默认值,再结合训练过程中的实际情况动态调整。 学习率(learning_rate) 0~1 1e-6~5e-4 学习率是在梯度下降的过程中更新权重时的超参数,过高会导致模型在最优解附近震荡,甚至跳过最优解,无法收敛,过低则会导致模型收敛速度过慢。 您可根据数据和模型的规模进行调整
管理科学计算大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型和修改作业配置参数,但在修改部署时模型不可替换或修改作业配置参数。 在“模型更新”或“修改部署”后进行升
管理NLP大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型,但在修改部署时模型不可替换。 在“模型更新”或“修改部署”后进行升级操作时,可选择全量升级或滚动升级两种方式:
在使用OBS服务上传数据时,如果遇到网络报错“NET::ERR_CERT_AUTHORITY_INVALID”,是由于域名未绑定有效的SSL证书,导致HTTPS请求被浏览器拦截。可以通过以下方法进行规避: 通过浏览器访问报错的URL链接,根据页面告警提示对链接进行安全认证。认证完成后,只
其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应答可以无缝实时更新。(搜索+大模型解决方案) 父主题: 大模型概念类问题
追踪操作记录、以及数据集的删除管理等。这不仅便于用户对已发布数据集的集中管理,还可帮助用户了解每个数据集的使用情况,从而简化数据资产的维护更新流程。通过这样的统一管理,用户能够更高效地组织和利用数据资源,确保数据资产的安全性和一致性。 管理数据资产 登录ModelArts Studio大模型开发平台,进入所需空间。
表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其他地址,使用GET和POST请求查看。 304 Not
登录环境B的ModelArts Studio大模型开发平台,在“空间资产 > 模型”页面,单击右上角的“导入模型”。 在“导入模型”页面,下载用户证书。 图2 下载用户证书 登录环境A的ModelArts Studio大模型开发平台,在“空间资产 > 模型 > 本空间”页面,单击操作列“更多 > 导
训练目标 全量微调:在模型有监督微调过程中,对大模型的全部参数进行更新。这种方法通常会带来最优的模型性能,但需要大量的计算资源和时间,计算开销较高。 LoRA微调:在模型微调过程中,只对特定的层或模块的参数进行更新,而其余参数保持冻结状态。这种方法可以显著减少计算资源和时间消耗,
GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时候,PATCH可能会去创建一个新的资源。
提示工程是指在不更新模型参数的前提下,通过设计和优化提示词的方式,引导大模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决与模型能力及提示词质量。其中模型能力的更新需要准备大量的数据及消耗大量的计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。
例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。 父主题: 提示词写作进阶技巧
定义了给输出数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 优化器种类 优化器种类 优化器是用于更新模型参数的算法,目前支持ADAM优化器。 第一个动量矩阵的指数衰减率(beta1) 用于定义ADAM优化器中的一阶矩估计的指数衰减率。一阶
String 作业ID。 name String 作业名称。 created_at String 创建时间。 updated_at String 更新时间。 state String 任务状态。 input TaskInputDto object 输入数据的信息。 output TaskOutputDto
括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 过拟合 过拟合是指为了得到一致假设而使假设变得
String 作业ID。 name String 作业名称。 created_at String 创建时间。 updated_at String 更新时间。 state String 任务状态。 input TaskInputDto object 输入数据的信息。 output TaskOutputDto
云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,并根据反馈进行定期更新或再训练。随着新数据的加入,模型可能需要进行调整,以保证其在实际应用中的表现稳定。 在应用阶段,除了将模型嵌入到具体业务流程中外,还需要根
步优化模型,使其更好地满足实际任务需求。例如,区域海洋要素预测的微调是在已有模型上添加最新数据,不改变模型结构参数或引入新要素,以适应数据更新需求。 在实际流程中,通过设定训练指标对模型进行监控,以确保效果符合预期。在微调后,评估用户模型,并进行最终优化,确认其满足业务需求后,进行部署和调用,以便实际应用。
是否已经包含所有的问题关键词。 内容示例:内容示例可以举例说明所需信息的格式,帮助大模型更好地从用户的回答中提取所需信息。例如,参数名称“手机号码”,可以在内容示例中填写“12345678910”。 单击“确定”,完成参数配置。 连接提问器组件和其他组件。 配置插件组件 插件组件