检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。 图1 立即体验 您可以选择希望体验的盘古大模型,单击“申请体验”,填写手机、邮箱和邀请码,单击“下一步”,提交体验盘古大模型的申请。 图2 申请体验-1 图3 申请体验-2 父主题: 体验盘古大模型功能
在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。 图1 立即体验 您可以选择希望体验的盘古大模型,单击“申请体验”,填写手机、邮箱和邀请码,单击“下一步”,提交体验盘古大模型的申请。 图2 申请体验-1 图3 申请体验-2 父主题: 体验盘古大模型功能
例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。 父主题: 进阶技巧
古API调用成功,并可在Postman中看到接口的返回信息。 图10 获取盘古API调用结果 使用Postman调用API时,如果出现SSL证书无效相关的报错,如“self signed certificate”(自签名证书)、“certificate has expired”(证书已过期)或“unable
在数据配置中,选择训练模型所需的数据集。 图2 数据配置 完成训练任务基本信息。设置模型的名称、描述以及订阅提醒。 设置订阅提醒后,模型训练和部署过程产生的事件可以通过手机或邮箱发送给用户。 图3 基本信息 单击“立即创建”,创建自监督训练任务。 自监督微调训练参数说明 不同模型训练参数默认值存在一定差异,请以前端页面展示的默认值为准。
其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应答可以无缝实时更新。(搜索+大模型解决方案) 父主题: 大模型概念类问题
古API调用成功,并可在Postman中看到接口的返回信息。 图10 获取盘古API调用结果 使用Postman调用API时,如果出现SSL证书无效相关的报错,如“self signed certificate”(自签名证书)、“certificate has expired”(证书已过期)或“unable
较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 训练轮数 4 1~50 完成全部训练数据集训练的次数。 学习率 0.0001 0~1 学习率用于控制每个训练步数(step)参数更新的幅度
选择盘古-NLP-N4系列模型时显示,配置最大Token长度。 服务名称 在线服务的名称。 描述 在线服务的简要描述。 订阅提醒 勾选订阅提醒,并添加手机号/邮箱,系统将在训练任务完成或重要事件发生时,发送提醒。 表2 部署实例量与推理单元数关系 模型类型 推理资源 盘古-NLP-N1系列模型
表示数据质量极差,提示需要进行优化。 表3 合规度校验规则说明 校验项 说明 个人隐私 校验数据中是否存在个人隐私信息,例如,身份证号、手机号、固定电话、Email地址、护照号、车牌号、军官证、车架号、GPS地址、IP地址、MAC地址和IMEI码等。 敏感关键词 校验数据中是否存在敏感关键字,如涉政信息。
储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。
储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。
提示工程是指在不更新模型参数的前提下,通过设计和优化提示词的方式,引导大模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决与模型能力及提示词质量。其中模型能力的更新需要准备大量的数据及消耗大量的计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。
数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。此外,若可预见实际场景会不断发生变化,建议您定期更新训练数据,对模型进行微调更新。 父主题: 典型训练问题和优化策略
括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 过拟合 过拟合是指为了得到一致假设而使假设变得
redis_cache = Caches.of("redis") # mysql sql_cache = Caches.of("sql") 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和用户cache会话下对应的答案2保存到缓存中,参考示例如下:
Caches.of(Caches.REDIS); // mysql Cache cache = Caches.of(Caches.SQL); 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和对应的答案2保存到缓存中,可参考以下示例。 import
String customSystemPrompt = "你是财务报销助手。当需要用户反馈信息时,尽可能提示用户名称,手机号码等原始信息。今天的日期是" + new SimpleDateFormat("yyyy年MM月dd日").format(new Date());
GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时候,PATCH可能会去创建一个新的资源。
搭建边缘服务器集群 执行如下命令,生成docker证书。注意该命令只需执行一次,如果已有相关证书,请跳过该步骤。 bash cluster_install-ascend.sh generate_docker_cert --pkg-path=/home/hilens/pkgs 基于