检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
它属于策略梯度方法的一种,旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
击“确定”保存当前标注并离开标注页面。选中的图片被自动移动至“已标注”页签,且在“未标注”和“全部”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、标签对应的图片数量。 智能标注 通过人工标注完成少量数据标注后,可以通过智能标注对剩下的数据进行自动标注,提高标注的效率。
"type": "modelarts/image_classification" } ] } 数据输出的data文件夹中存放的是修改、更新过的图片,对于数据处理过程中没有修改过的图片,在data文件夹中不会展示,图片的位置信息显示该图片在输入目录中。 output.manif
modelarts:network:get aom:metric:get aom:metric:list aom:alarm:list 实例的启动、停止、创建、删除、更新等依赖的权限。 建议配置。 仅在严格授权模式开启后,需要显式配置左侧权限。 动态挂载存储配置 ModelArts modelarts:no
notebook字段数据结构说明所示。 workspace Object 工作空间,如表18所示。 latest_update_timestamp String 实例的更新时间。 flavor_details Object 机器规格详情,如表9所示。 pool Object 专属资源池,如表10所示。 ai_project
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡对CogVideoX模型基于sat框架进行全量微调。本文档中提供的脚本,是基于原生CogV
的数据对象 方法的执行依赖于Workflow对象的名称:当该名称的工作流不存在时,则创建新工作流并创建新执行;当该名称的工作流已存在时,则更新存在的工作流并基于新的工作流结构创建新的执行 workflow.release_and_run() 发布Workflow至运行态并运行 该
算法版本数量,默认为0。 size Integer 算法大小。 create_time Long 算法创建时间戳。 update_time Long 算法更新时间戳。 表4 job_config 参数 参数类型 描述 code_dir String 算法的代码目录。如:“/usr/app/”。应与boot_file一同出现。
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
查看修改结果。 图3 修改封面图和二级标题 编辑许可证类型 在发布的资产详情页面,单击右侧的“编辑”。 在许可证类型右侧的下拉框中选择需要更新的许可证,单击“保存”完成修改。 单击许可证类型后面的感叹号可以了解许可证详情。 编辑标签 单击标签右侧的出现标签编辑框。 在下拉框中勾选
响应参数 状态码: 200 表7 响应Body参数 参数 参数类型 描述 create_at Long 创建时间。 update_at Long 更新时间。 charging_mode String 计费模式。 COMMON:同时支持包周期和按需 POST_PAID:按需模式 PRE_PAID:包周期
型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_t
型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的hanler对
型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/work/llm
型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_t
creation_timestamp String 实例的创建时间。 latest_update_timestamp String 实例的更新时间。 profile Object 配置信息,如表12所示。 flavor String 机器规格。 flavor_details Object
“SSH远程开发” 开启此功能后,用户可以在本地开发环境中远程接入Notebook实例的开发环境。 实例在停止状态时,用户可以在Notebook详情页中更新SSH的配置信息。 说明: 开启此功能的实例中会预置VS Code插件(python、jupyter等)以及VS Code Server包,会占用约1G左右的持久化存储空间。
_params.json” 。 低秩适应(LoRA)是一种重参数化方法,旨在减少具有低秩表示的可训练参数的数量。权重矩阵被分解为经过训练和更新的低秩矩阵。所有预训练的模型参数保持冻结。训练后,低秩矩阵被添加回原始权重。这使得存储和训练LoRA模型更加高效,因为参数明显减少。 超参