检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
a_checked":true} { "source": "obs://hard_example_path/Data/be462ea9c5abc09f_checked.jpg", "property": { "@modelarts:data_checked": true
"id": "DE-7d558ef8-c73d-11ea-964c-0255ac100033", "latest_update_timestamp": "1594888143062", "name": "notebook-c6fd", "profile":
task timeout. The %s-minute limit is over. imagePacker构建镜像有超时时间限制,请精简代码,提高编译效率。FAQ 正常 模型描述已更新。 Model description updated. - 正常 模型运行时依赖未更新。 Model
data_sources=None, work_path=None, **kwargs) 推荐使用根据数据类型创建数据集,根据标注类型创建数据集的功能将会下线。 示例代码 示例一:根据数据类型创建图像数据集 from modelarts.session import Session from modelarts
访问,这样可使得学生可独立完成在ModelArts上的实验。 企业场景:管理者可创建用于生产任务的工作空间并限制仅让运维人员使用,用于日常调试的工作空间并限制仅让开发人员使用。通过这种方式让不同的企业角色只能在指定工作空间下使用资源。 前提条件 已开通工作空间白名单,并配置了Mo
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.910-xxx.zip和算子包AscendCloud-OPP-6.3.910-xxx
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.908-xxx.zip和算子包AscendCloud-OPP-6.3.908-xxx
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.909-xxx.zip和算子包AscendCloud-OPP-6.3.909-xxx
AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾分类,让您不用编写代码也可以实现生活垃圾分类。 本案例只适用于新版自动学习功能。 步骤一:准备工作 注册华为账号并开通华为云、实名认证 注册华为账号并开通华为云
AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾分类,让您不用编写代码也可以实现生活垃圾分类。 本案例只适用于新版自动学习功能。 步骤一:准备工作 注册华为账号并开通华为云、实名认证 注册华为账号并开通华为云
“-t” 指定了新的镜像地址,包括{局点信息}/{组织名称}/{镜像名称}:{版本名称},请根据实际填写。建议使用完整的swr地址,因为后续的调试和注册需要使用。 “-f ”指定了Dockerfile的文件名,根据实际填写。 最后的“ . ”指定了构建的上下文是当前目录,根据实际填写。
json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet 预训练数据集的关键字为“text”,格式如下: [ {"text": "document"}, {"other
json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet 预训练数据集的关键字为“text”,格式如下: [ {"text": "document"}, {"other
json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet 预训练数据集的关键字为“text”,格式如下: [ {"text": "document"}, {"other
json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00000-of-00001-a09b74b3ef9c3b56.parquet 预训练数据集的关键字为“text”,格式如下: [ {"text": "document"}, {"other
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx
池均不支持设置训练作业优先级。 仅支持PyTorch和MindSpore框架的分布式训练和调测,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 使用自定义镜像创建训练作业时,镜像大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小的一半。镜像过
rk_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-us
co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size
co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size